
Resolution-like theorem proving

for high-level conditions

Karl-Heinz Pennemann

University of Oldenburg, Germany⋆⋆

pennemann@informatik.uni-oldenburg.de

Abstract. The tautology problem is the problem to prove the validity
of statements. In this paper, we present a calculus for this undecidable
problem on graphical conditions, prove its soundness, investigate the
necessity of each deduction rule, and discuss practical aspects concerning
an implementation. As we use the framework of weak adhesive HLR
categories, the calculus is applicable to a number of replacement capable
structures, such as Petri-Nets, graphs or hypergraphs.

Key words: first-order tautology problem, high-level conditions, theo-
rem proving, resolution, weak adhesive HLR categories

1 Introduction

(High-level) Conditions are a graphical formalism to specify valid objects as well
as morphisms, i.e., they can be used to describe system or program states as well
as specify matches for transformation rules. They provide an intuitive formalism
for structural properties and are well suited for reasoning about the behavior of
transformation systems.

Our goal is to decide the correctness of graphical specifications consisting
of a precondition, a program [HP01,HPR06] and a postcondition. A classical
approach [DS89] to this problem is the proof or refutation that the precondition
implies the weakest precondition [HPR06] of the program and the postcondition.
To decide such an implication is a special instance of the tautology problem: the
decision whether or not a claimed statement is valid for all possible objects.

Is c valid ?

∀G ∈ C. G |= c ?

condition c yes/no

For the category of finite, directed, labeled graphs, conditions are expressively
equivalent [Ren04,HP08] to first order logic on graphs [Cou90]. Consequently,
the tautology problem for arbitrary conditions over arbitrary categories is not

⋆⋆ This work is supported by the German Research Foundation (DFG), grants GRK
1076/1 (Graduate School on Trustworthy Software Systems) and HA 2936/2 (De-
velopment of Correct Graph Transformation Systems).

decidable, i.e., there does not exist an algorithm that decides the validity of
arbitrary conditions over arbitrary categories. In the context of finite graphs,
the tautology problem is not even semi-decidable: while it is possible to search
for proofs, one is not guaranteed to find one, even if there is no (finite) graph
that does not satisfy the given condition.

In the case of graphs, the translation of conditions into first order logic [HP08]
enables to solve the tautology problem using existing first-order theorem provers
such as Vampire [RV02], Darwin [BFT06] or Prover9 [McC08]. However, 7
out of 74 example tautologies generated from correct program specifications
of the “access control” example in [HPR06] cannot be solved by any of the
aforementioned tools, given 1 hour time per tautology (Intel T5600, 1.83GHz).
One reason for this is that first-order theorem provers need to be restricted to
graphs via axioms that become part of the problem to be solved. In contrast,
a theorem prover based on conditions would be restricted to the considered
category in a natural, constructive way. This property in combination with other
advantages makes it worthwhile to investigate a theorem prover dedicated to
conditions.

In this paper, we present a calculus for conditions over adhesive high-level
replacement categories. Taking resolution [Rob65], the most successful approach
to first-order theorem proving, as an ideal, we present six deduction rules able
to refute conditions over graphs and graph-like structures in conjunctive normal
form. We show that every rule application corresponds to a logical deduction,
and investigate if omission of any rule leads to an incomplete calculus. We discuss
practical aspects concerning an implementation such as filtering out structurally
equivalent conditions, and briefly compare our results with related work, e.g.
Koch et. al. [KMP05] and Orejas et. al. [OEP08].

The paper is organized as follows. In Section 2, the definition of conditions
is reviewed and examples are given. In Section 3, the calculus is presented, and
its soundness is shown. In Section 4, we discuss practical aspects concerning
an implementation. We briefly relate our results to other work in Section 5. A
conclusion including further work is given in Section 6.

2 Conditions

In this section, we recall the definition of conditions on graphs and graph-like
structures. To abstract from a specific structure, we use the framework of weak
adhesive HLR categories. A detailed introduction can be found in [EEPT06].

Assumption 1. Assume that 〈C,M〉 is a weak adhesive HLR category consist-
ing of a category C of objects and a class M of monomorphisms. Additionally,
we require

– an M-initial object I, i.e., an object I ∈ C such that, for every object G ∈ C,
there exists a unique morphism iG: I → G and iG is in M,

– epi-M-factorization, i.e., for every morphism there is an epi-mono-factorization
with monomorphism in M,

2

– a finite number of M-morphisms, i.e. for every objects G, H , there exists
only a finite number of morphisms G →֒ H in M (up to isomorphism),

– a finite number of epimorphisms for any domain G, i.e. for every object G,
there is only a finite number of epimorphisms e: G → H (up to isomorphism).

The last two requirements ensure the effectiveness of the constructions in this
paper. From now on, morphisms in C are simply referred to as morphisms.

Example 1. The category Graph of finite, directed, labeled graphs together with
the class M of all injective graph morphisms constitutes a weak adhesive HLR
category [EEPT06] satisfying the assumptions. The empty graph ∅ is the M-
initial object.

Notation. A morphism m with domain A and codomain B is denoted by
m: A→B. We write “→֒” instead of “→” to indicate that the morphism is in M.
For graph morphisms, the mapping of nodes is depicted by indices, if necessary.

For a certain rule in our calculus, we require the notion of M-pushout. An M-
pushout is a special pushout for which it can be guaranteed that the unique
morphism u is in M, if the commutative morphisms p, q are in M.

Definition 1 (M-pushout). A pushout c ◦ a = d ◦ b with
c, d ∈ M is called M-pushout, if for all morphisms p, q with
p ◦ a = q ◦ b, the unique existing morphism u with p = c ◦ u
and q = d ◦ u is in M.

We use the following characterization of M-pushouts.

• •

• •

•

b

a d

c

(PO) q

u
p

Fact 1 (M-pushout). A pushout c◦a = d◦ b with c, d ∈ M is an M-pushout,
if and only if for all epimorphisms e with dom(e) = codom(d) we have e 6∈ M
implies e ◦ c 6∈ M or e ◦ d 6∈ M.

Proof. Via epi-M-factorization using the converse statement.
e 6∈ M implies (e ◦ c 6∈ M or e ◦ d 6∈ M) (characterization)

⇔ not (e ◦ c 6∈ M or e ◦ d 6∈ M) implies not e 6∈ M (converse)
⇔ (e ◦ c ∈ M and e ◦ d ∈ M) implies e ∈ M (deMorgan)

⇔ (m ◦ e ◦ c ∈ M and m ◦ e ◦ d ∈ M) implies m ◦ e ∈ M
„

m ∈ M, M closed
under comp./decomp.

«

⇔ (u ◦ c ∈ M and u ◦ d ∈ M) implies u ∈ M (epi-M-factorization)
⇔ (p ∈ M and q ∈ M) implies u ∈ M (commutativity)

Example 2 (access control graphs). In the following, we present state graphs of a
simple access control for computer systems, which abstracts authentication and
models user and session management in a simple way. We use this example solely
for illustrative purposes. A more elaborated, role-based access control model
is considered in [KMP05]. The basic items of our model are users , sessions

, logs , computer systems , and directed edges between those items. An
edge between a user and a system represents that the user has the right to
access the system, i.e. to establish a session with the system. Every user node is

3

proposed connection established connection

failed, logged
login attemptaccess right

Fig. 1. The type graph of the access control system

connected with one log node, while an edge from a log to the system represents a
failed (logged) login attempt. Every session is connected to a user and a system.
The direction of the latter edge differentiates between sessions that have been
proposed (an outgoing edge from a session node to a system) and sessions that
have been established (an incoming edge to a session node from a system).

Conditions are nested constraints and application conditions generalizing the
corresponding notions in [HW95,EEHP06] along the lines of [Ren04].

Definition 2 (conditions). A (nested) condition over an object P is of the
form true or ∃(a, c), where a: P → C is a morphism and c is a condition over C.
Moreover, Boolean formulas over conditions over P yield conditions over P , i.e.,
¬c and ∧j∈J cj are (Boolean) conditions over P , where J is a finite index set and
c, (cj)j∈J are conditions over P . Additionally, ∃a abbreviates ∃(a, true), ∀(a, c)
abbreviates ¬∃(a,¬c), false abbreviates ¬true, ∨j∈J cj abbreviates ¬∧j∈J ¬cj

and c ⇒ d abbreviates ¬c ∨ d.
Every object and morphism satisfies true. A morphism p satisfies a condition

∃(a, c), if there exists a morphism q in M such that q ◦ a = p and q satisfies c.

P

G

C,a

p q
=

c

|=

)∃(

An object G satisfies a condition ∃(a, c), if the condition is over the initial ob-
ject I and the initial morphism iG: I → G satisfies the condition. The satisfaction
of conditions by objects and morphisms is extended onto Boolean conditions in
the usual way. We write G |= c resp. p |= c to denote that the object G resp.
the morphism p satisfies c. For two conditions c, d over C, d is a consequence or
logical deduction of c, written c |= d, if for all morphisms p in M with domain C,
p |= c implies p |= d. Two conditions c and c′ are equivalent, denoted by c ≡ c′,
if for all morphisms p in M, p |= c iff p |= c′.

In the context of objects, conditions (over the initial object I) are also called
constraints.

Notation. For every morphism a: P → C in a condition, we just depict the
codomain C, if the domain P can be unambiguously inferred. This is the case for
constraints, which are by definition conditions over I. For instance, the constraint
∀(∅ →

1
, ∃(

1
→

1 2
)) with the meaning “Every node has an outgoing edge

to another distinct node” can be represented by ∀(
1
, ∃(

1 2
)).

4

Example 3 (access control conditions). Consider the access control graphs intro-
duced in Example 2. Conditions allow to formulate statements on the graphs of
the access control and can be combined to form more complex statements. The
following conditions are over the empty graph:

∃() A session is proposed

∃() A session is established

∀(, ∃() ∨ ∃()) Every session is either proposed or established

¬∃() No session is shared between two users

∀(, ∃()) Every session is associated to a user

∀(, ∃()) Every user that is logged into a system, has
an access right.

Example 4. Consider the access control graphs introduced in Example 2. The
dynamic part of the access control system is the reflexive, transitive closure of a
non-deterministic choice of programs such as the addition and removal of users,
the grant and revocation of access rights and a login and logout procedure. See
[HPR06] for a complete overview. We exemplarily consider the transformation

rule Access = 〈 ⇒ 〉 which is a part of the login procedure.
Such a rule consists of a left-hand side expressing the prerequisites “If a user
proposes a session to a system for which he has the appropriate access right” and
the local effect of the rule’s application “Then this proposed session is accepted
and becomes established”. Our goal is to show that Access preserves the satis-

fiability of the condition ∀(, ∃()) ∧ ¬∃(). By
construction of a weakest precondition [HPR06], the problem reduces to prove
that

¬





(1)
∨
¬∃

∧ (2)
∨
¬∃
(

,
∧ ∨

¬∃

)

∧ (3.1) ∃

∨ (3.2) ∃

∨ (3.3) ∃

∨ (3.4) ∃

(

,
∧ ∨

¬∃

)

∨ (3.5) ∃

(
,
∧ ∨

¬∃

)

∨ (3.6) ∃

(
,
∧ ∨

¬∃

)

∨ (3.7) ∃
(

,
∧ ∨

¬∃

)

∨ (3.8) ∃



 ,
∧ ∨

¬∃





∨ (3.9) ∃

(

,
∧ ∨

¬∃

)

∨ (3.10) ∃

(

,
∧ ∨

¬∃

)

∨ (3.11) ∃

(
,
∧ ∨

¬∃

)





5

is a tautology.

For rules in our calculus such as (Lift), we assume conditions to be in M-normal
form (MNF), i.e. if for all subconditions ∃(a, c) the morphism a is in M.

Fact 2 (M-normal form). Every condition c over P can be transformed into
a condition c′ in MNF such that c ≡ c′.

Proof. ∃(a, c) ≡ ∃a ≡ false, if a 6∈ M (see [HP08]).

We now define the notion of a non-negated subcondition, which we use later to
restrict the applicability of deduction rules.

Definition 3 (non-negated subcondition). A condition c is a non-negated
subcondition of a condition d, if c = d or if d is of the form ∃(a, e) or (e ∧ e′) or
(e ∨ e′) and c is a non-negated subcondition of e or e′.

3 Proving high-level conditions

The tautology or validity problem is the fundamental problem of deciding whether
or not a claimed statement is true for all possible objects.

Definition 4 (tautology problem). Given a category C, the tautology problem
is the problem to decide for any condition c, whether or not forall G ∈ C, G |= c.

We write “|= c” if c is a tautology and “ 6|= c” if c is not a tautology. A straight-
forward approach to answer the tautology problem for a condition c is to prove
“true |= c”. This can be done by constructing a proof chain “true |= . . . |= c”,
starting without any assumptions (true), yielding in logical deductions the given
condition c. Instead of constructing such a proof top-down, resolution follows
a more target-oriented view and considers the complementary problem of re-
futing the negated condition “¬c”. In this case, the goal is to find a refutation
“¬c |= . . . |= false”.

After negation of an input F , a resolution-based algorithm on formulas would
transform the negated statement ¬F into prenex normal form and skolemize to
yield clauses. However neither does there exists a comparable normal form for
conditions, nor is skolemization possible for a given category such as Graph:
Skolemization requires the introduction of fresh function symbols of unbounded
arity, for which there seems no equivalent operation for a fixed structure. Never-
theless, it is possible to transform the condition ¬c into conjunctive normal form.

Definition 5 (conjunctive normal form). Condition true is in conjunctive
normal form (CNF). Every condition ∧j∈J ∨k∈Kj

ck is in CNF, if for every j ∈ J
and every k ∈ Kj , ck = ∃(ak, dk) or ck = ¬∃(ak, dk) for some morphism a and
some condition dk in CNF.

Given a condition in CNF, the actual resolution process begins and adds derived
facts (disjunctions) to the conjunction. The goal is the addition of false as con-
junct. If a true resolution calculus were possible for conditions, each refutation
step “|=” would be of the form:

6

– Select two disjunctions (¬∃(a, c)∨c1) and (∃(b, d)∨c2) from the conjunction
such that ∃(b, d) |= ∃(a, c).

– Add the resolvent (c1 ∨ c2) to the conjunction.

Special case: if c1 and c2 do not exist, or equivalently, are false, the resolvent is
false and the negated condition ¬c is refuted (the goal).

However, to decide ∃(b, d) |= ∃(a, c) is as hard as the original problem ¬c |=
true, as we can not dissolve nested subconditions. Therefore we need additional
deduction rules that cope with this situation and create, manage and (hopefully)
solve subproblems of the form ∃(b, d) |= ∃(a, c). Formally, these deduction rules
are defined as follows.

Definition 6 (deduction rules). Let c1, . . . , cn, e be conditions. A (deduction)
rule R has the form

c1
...

cn

e

if α

and is shortly denoted by R = [c1, . . . , cn/e]α. The conditions c1, . . . , cn are
called premises, e is the resolvent and α is an (informal) side condition. A rule
may be applied to a condition c in CNF, if there is exists a non-negated subcon-
dition c′ in c such that c′ = ∧j∈J dj is a conjunction of disjunctions (dj)j∈J that
contains all premises of R, i.e. for all 1 ≤ k ≤ n, there is a j ∈ J with ck = dj ,
and the side condition α is satisfied. Application of R yields a new condition d
that is derived from c by adding the resolvent e to the conjunction c′. We write
c ⊢R d to denote such a derivation step, whereas we write c ⊢K d to denote a
derivation sequence c ⊢R . . . ⊢Q d with rules R, . . . , Q in K.

The deduction rules of our calculus contain variables for morphisms and condi-
tions. Prior to a rule application, these variables must be matched in an uni-
fication process, as usual, to yield an applicable instance of the rule. For the
formal definition of our calculus, we require the following theorem stating the
possibility of combining two conditions ∃p and c conjunctively:

Theorem 1 ([HP08,HP05]). There is a transformation A2, such that for ev-
ery morphism p in M and every condition c over dom(p) the following holds:
For all p′′ ∈ M with dom(p′′) = codom(p), p′′ |= A2(p, c) ⇔ p′′ ◦ p |= c.

The transformation A2 is described in [HP08] as follows:

Construction. For morphisms p in M and conditions over dom(p), let

•

•

•

•

•

(1)a′

e

p

a

q

r

b

A2(p, true) = true
A2(p, ∃(a, c)) = ∨e∈E ∃(b, A2(r, c)).

Construct the pushout (1) of p and a leading to morphisms
a′ and q. The disjunction ∨e∈E ranges over all epimor-
phisms e with domain dom(a′) such that both b = e ◦ a′

and r = e ◦ q are in M.

7

Furthermore, A2(p, ¬c) = ¬A2(p, c) and A2(p, ∧j∈J cj) = ∧j∈J A2(p, cj).

3.1 A calculus for high-level conditions

In the following, we introduce a calculus K for high-level conditions representing
the possible actions a theorem prover based on K may perform.

Definition 7 (calculus K). The calculus K for high-level conditions consists of
the following six rules: (Descent), (Resolve), (Partial resolve), (Partial lift), (Lift)
and (Supporting lift). Let a, b, m be morphisms and let c, d, c1, c2 be conditions.

(Descent)

∃(a, false ∧ c) ∨ c1

c1

(Resolve)

¬∃(a, true) ∨ c1

∃(b, d) ∨ c2

c1 ∨ c2

if ∃m ∈ M. m ◦ a = b
and d 6= false

• •

•b

a

m

(Partial resolve)

¬∃(a, true) ∨ c1

∃(b, d) ∨ c2

¬∃(m∗, true) ∨ c1 ∨ c2

if ∃m ∈ M. m ◦ b = a and
〈m∗, b∗〉 is the M-pushout
complement of 〈b, m〉
and d 6= false

• •

••

b

a
m∗

b∗

m

(Partial lift)

¬∃(a, c) ∨ c1

∃(b, d) ∨ c2

∃(b, d ∧ A2(m,¬c)) ∨ c1 ∨ c2

if c 6=true and
∃m ∈ M. m ◦ a = b
and d 6= false

• •

•b

a

m

(Lift)

¬∃(a, c) ∨ c1

∃(b, d) ∨ c2

∃(b, d ∧ A2(b,¬∃(a, c))) ∨ c1 ∨ c2

if c 6=true and b ∈ M
and d 6= false

(Supporting lift)

∃(a, c) ∨ c1

∃(b, d) ∨ c2

∃(b, d ∧ A2(b, ∃(a, c))) ∨ c1 ∨ c2

if b ∈ M
and c 6= false
and d 6= false

The rule (Descent) is used to carry over a successful nested refutation into an
outer refutation. The rule (Resolve) is the core of our calculus and represents
a straightforward case for which the problem ∃(b, d) |= ∃(a, c) is decidable. The
rules (Descent) and (Resolve) are the only ones that (may) reduce the number
of elements in a disjunction. The rule (Partial resolve) is necessary for proving
the validity of conditions outside the decidable ∀-free fragment of conditions.
The rules (Partial lift), (Lift) and (Supporting lift) are similar in the sense that
they create additional facts to find nested refutations by combining information.

8

Outstandig is the rule (Partial lift) which moves the negation from a condition
towards the nested subcondition. Note that (Supporting lift) is the only rule for
which repeated applications on its own resolvent may be necessary. For graphs,
unbounded applications of (Supporting lift) are the only reason a theorem prover
based on K does not terminate, assuming that the deduction of structural equiv-
alent conditions is surpressed, as discussed in Section 4.

Example 5. Consider the following tautology ∀(
1
, ∃

1
) ⇒ ∀(

1 2
, ∃

1 2
)

expressing “Every node has a loop implies every two nodes each have a loop”.
A transformation into CNF yields

(1) ¬∃(
1
, ¬∃

1
)

(2) ∧ ∃(
1 2

, ¬∃
1 2

)

and a proof of the statement’s validity is as follows:

(1) ¬∃(
1
, ¬∃

1
)

(2) ∃(
1 2

, ¬∃
1 2

)

(3) ∃(
1 2

, (3.1) ¬∃
1 2

)

(3.2) ∧ ∃
1 2

(Partial lift)

1 2

1 2

1 2

1

1

(1)

m

(3.1) ¬∃
1 2

(3.2) ∃
1 2

(3.3) ¬∃
1 2

(Partial resolve)
1 2 1 2

1 21 2

(1) ¬∃(
1
, ¬∃

1
)

(3) ∃(
1 2

, (3.1) ∧ . . . ∧ (3.3))

(4) ∃(
1 2

, (4.1) ¬∃
1 2

)

(4.2) ∧ ∃
1 2

(4.3) ∧ ¬∃
1 2

(4.4) ∧ ∃
1 2

(Partial lift)

1 2

1 2

1 2

2

2

(1)

m

(4.3) ¬∃
1 2

(4.4) ∃
1 2

(4.5) false

(Resolve)
1 2 1 2

1 2

(4) ∃(
1 2

, (4.1) ∧ . . . ∧ (4.5))

(5) false
(Descent)

Example 6. Consider the condition stated in Example 4. Given the rules of K,
our goal is to refute the disjunction (3) with the help of the facts (1) and (2).
The rule (Resolve) can be applied with argument (1) to resolve (3.1)-(3.6), e.g.,

9

(1)
(3.1) ∨ ((3.2) ∨ . . . ∨ (3.11))
(3.2) ∨ . . . ∨ (3.11)

(Resolve)

Subconditions (3.7)-(3.11) are resolved by applying rule (Partial lift) with argu-
ment (2) and subsequent application of (Resolve) on the nested subconditions,
and (Descent), e.g.,

(2)
(3.7) ∨ ((3.8) ∨ . . . ∨ (3.11))
(3.7′) ∨ (3.8) ∨ . . . ∨ (3.11)

(Partial lift)

with (3.7’) ∃



 ,
∨

¬∃

∧
∨

∃





Eventually, we yield an empty disjunction, or equivalently, false as an element
of the outer conjunction, thus the input condition is refuted and the condition
proved.

3.2 Soundness

In this section, we prove the soundness of the calculus K. We show that every
application of a rule R in K corresponds to a logical deduction.

Theorem 2 (soundness of K). The calculus K for high-level conditions is
sound, i.e., for every conditions c, d over C in CNF the following holds:

c ⊢K d implies c |= d.

The proof is done in three steps: first, we establish that we can investigate
the soundness of deduction rules independently of disjunctive context. In the
following, let r, pj, qj be conditions for 1 ≤ j ≤ n.

Fact 3. For every rule R = [(p1 ∨ q1), . . . , (pn ∨ qn)/(r∨ q1 ∨ . . . ∨ qn)]α we have
(p1 ∧ . . . ∧ pn) |= r implies ((p1 ∨ q1) ∧ . . . ∧ (pn ∨ qn)) |= (r∨ q1 ∨ . . . ∨ qn).

Second, we can prove the soundness of each individual rule R in K.

Lemma 1. For every rule R = [c1, . . . , cn/d]α in K, if α holds then (c1 ∧ . . . ∧
cn) |= d.

Proof. For the rule (Descent), we have ∃(a, false ∧ c) ≡ ∃(a, false) ≡ false.
For every rule of the form R = [(p1 ∨ q1), . . . , (pn ∨ qn)/(r∨ q1 ∨ . . . ∨ qn)]α with
cj = (pj ∨ qj) for 1 ≤ j ≤ n, we first show (p1 ∧ . . . ∧ pn) |= r:

(Resolve). First, we transform the proof obligation:
(¬∃(a, true) ∧ ∃(b, d)) ⇒ false

≡ ¬(¬∃(a, true) ∧ ∃(b, d)) ∨ false (Def. ⇒)
≡ ∃(a, true) ∨ ¬∃(b, d) ∨ false (De Morgan)
≡ ∃(a, true) ∨ ¬∃(b, d) ((c ∨ false) ≡ c)
≡ ∃(a, true) ⇐ ∃(b, d) (Def. ⇒)

10

We show ∃(b, d) |= ∃(a, true):
∃(b, d)

|= ∃(b, true) (d |= true)
|= ∃(a, true) (∃m∈M. m ◦ a = b, Def. 2)

• •

•

•

b

a

m

p q
r

(Partial resolve). First, we transform the proof obligation:

(¬∃(a, true) ∧ ∃(b, d)) ⇒ ¬∃(m∗, true)
≡ ¬(¬∃(a, true) ∧ ∃(b, d)) ∨ ¬∃(m∗, true) (Def. ⇒)
≡ ∃(a, true) ∨ ¬∃(b, d) ∨ ¬∃(m∗, true) (De Morgan)
≡ ∃(a, true) ⇐ ¬(¬∃(b, d) ∨ ¬∃(m∗, true)) (Def. ⇒)
≡ ∃(a, true) ⇐ (∃(b, d) ∧ ∃(m∗, true)) (De Morgan)

We show (∃(b, d) ∧ ∃(m∗, true)) |= ∃(a, true):
p |= (∃(b, d) ∧ ∃(m∗, true))

⇔ ∃q ∈ M. q ◦ b = p and q |= d
and ∃r ∈ M. r ◦ m∗ = p and r |= true (Def. 2)

⇒ ∃s ∈ M. r ◦ m∗ = s ◦ b∗ ◦ m∗ = s ◦ a = p
and s |= true (M-Pushout)

• •

• •

•

b

m∗ a
m

b∗

p
q

r s

(Partial lift). We show ∃(b, d) ∧ ¬∃(a, c) |= ∃(b, d ∧ A2(m,¬c)):

p |= ∃(b, d) ∧ ¬∃(a, c)
⇔ p |= ∃(b, d) and p |= ¬∃(a, c) (Def. 2)
⇔ ∃r ∈ M. r ◦ b = p and r |= d and r ◦ b |= ¬∃(a, c) (Def. 2)
⇒ ∃r ∈ M. r ◦ b = p and r |= d and

∃r ◦ m ∈ M. r ◦ m ◦ a = p and r ◦ m |= ¬c (m ◦ a = b, Def. 2)
⇔ ∃r ∈ M. r ◦ b = p and r |= d and

∃r ◦ m ∈ M. r ◦ m ◦ a = p and r |= A2(m,¬c) (Thm. 1)
⇔ ∃r ∈ M. r ◦ b = p and r |= d and r |= A2(m,¬c) (m ◦ a = b, Def. 2)
⇔ p |= ∃(b, d ∧ A2(m,¬c)) (Def. 2)

• •

•

•

b

a

m

p q
r

A2(m,¬c)

c

(Lift). We show ∃(b, d) ∧ ¬∃(a, c) |= ∃(b, d ∧ A2(b,¬∃(a, c))):

p |= ∃(b, d) ∧ ¬∃(a, c)
⇔ ∃q ∈ M. q ◦ b = p and q |= d and q ◦ b |= ¬∃(a, c) (Def. 2)
⇔ ∃q ∈ M. q ◦ b = p and q |= d and q |= A2(b,¬∃(a, c)) (Thm. 1)
⇔ p |= ∃(b, d ∧ A2(b,¬∃(a, c))) (Def. 2)

• •

•

b

p
q

A2(b,¬∃(a, c))¬∃(a, c)

(Supporting lift). The proof is analogous to (Lift) except ¬∃(a, c) is replaced
with ∃(a, c).

11

By Fact 3, we can lift any statement (p1 ∧ . . . ∧ pn |= r) for any disjunctive
context q1, . . . , qn and yield (p1 ∨ q1) ∧ . . . ∧ (pn ∨ qn) |= (r∨ q1 ∨ . . . ∨ qn). This
concludes the soundness proof for the deduction rules in K.

Third, we show that deductions concerning non-negated subconditions within a
condition in CNF can be lifted to the whole condition.

Fact 4. For any non-negated condition c′ within a condition c over C in CNF,
with d derived from c by replacing c′ with d′, we have c′ |= d′ implies c |= d.

Proof. By induction over the structure of conditions.
Basis: c = c′ |= d′ = d.
Step: We show, for all morphisms m in M with domain C:
Case ∃(a, c): m |= ∃(a, c) iff (∃q ∈ M. m = q ◦ a and q |= c) implies (∃q ∈
M. m = q ◦ a and q |= d) iff m |= ∃(a, d).
Case (c ∧ e): m |= (c ∧ e) iff (m |= c and m |= e) implies (m |= d and m |= e)
iff m |= (d ∧ e).
Case (c ∨ e): analogous to (c ∧ e).
The case ¬c is excluded by the assumption that c′ is a non-negated subcondition.

Finally, we can prove the soundness of K.

Proof of Theorem 2. Let c, d be arbitrary conditions over C in CNF. A deduction
c ⊢K d is a sequence of deductions c ⊢R . . . ⊢Q d for rules R, . . . , Q in K. Using
induction over the length of the deduction, we can reduce the proof obligation
to “c ⊢R d implies c |= d”, where c, d are arbitrary conditions over C in CNF
and R = [c1, . . . , cn/e]α is an arbitrary deduction rule in K. Assume, c ⊢R d.
By Definition 6, there is a non-negated subcondition c′ which is a conjunction
(c1 ∧ . . . ∧ cn ∧ q) and d is derived from c by adding e to the conjunction, i.e.
(c1∧ . . .∧cn∧q) ⊢ (e∧c1∧ . . .∧cn∧q). By Lemma 1, we have (c1∧ . . .∧cn) |= e.
Consequently, (c1 ∧ . . . ∧ cn ∧ q) |= (e ∧ q). By Fact 4, we conclude c |= d.

3.3 Necessity

In the following, we investigate whether or not a rule is necessary, for every rule
of the calculus K. A rule R is necessary, if there exists a tautology which cannot
be proven anymore if R is omitted. We show that (Resolve) could be omitted,
if the artificial restriction c 6= true is omitted from (Partial lift), and show that
all other rules are necessary. However, our considerations do not exclude the
existence of a smaller calculus with similar or different rules.

Fact 5. For every deduction c′ ⊢(Resolve) f ′, there is a sequence of deductions

c′ ⊢(Partial lift’) d′ ⊢(¬true ≡ false) e′ ⊢(Descent) f ′

where (Partial lift’)=[∃(b, d) ∧ ¬∃(a, c)/∃(b, d ∧ A2(m,¬c))]α and α = (∃m ∈
M. m ◦ a = b and d 6= false).

12

Proof. Let c′ = (¬∃(a, true) ∧ ∃(b, d)). Then c′ ⊢(Partial lift’) d′ ⊢(¬true ≡ false)

e′ ⊢(Descent) f ′ where d′ = ∃(b, d ∧ A2(m,¬true)) = ∃(b, d ∧ ¬true) and e′ =
∃(b, d∧ false) and f ′ = false. Using Fact 3 and Lemma 1, our considerations can
be lifted to arbitrary c′,f ′ with c′ ⊢(Resolve) f ′.

We propose to let shortcut (Resolve) remain in K, as the side conditions of (Re-
solve) and (Partial lift) prevent both rules from being applicable simultaneously.

Fact 6. For every rule R ∈ K \ {(Resolve)}, there is a condition c such that
“¬c ⊢K false” and not “¬c ⊢Kr{R} false”.

Proof. (Descent) Negation of the tautology ¬∃(, false) with the meaning “No
node satisfies false” yields ∃(, false). No other rule is applicable.

(Partial resolve) Negation of the tautology ∀(
1 2

, ∃
1 2

∨ ¬∃
1 2

∨
¬∃

1 2
) with the meaning “For every pair of nodes, either both have loops

or the first node has no loop or the second node has no loop” yields ∃(
1 2

,
¬∃

1 2
∧ ∃

1 2
∧ ∃

1 2
). Only the rule (Partial resolve) can derive the

intermediate fact ∃
1 2

, or alternatively ∃
1 2

, required for a refutation.
(Partial lift) Negation of the tautology ∃(

1
, ¬∃

1
) ⇒ ¬∀(

1
, ∃

1
) with the

meaning “There is a node without a loop implies not every node has a loop”
yields ∃(

1
, ¬∃

1
) ∧ ¬∃(

1
, ¬∃

1
) and only the use of (Partial lift) leads

to a successful refutation as it negates the subcondition ¬∃
1

:

¬∃(
1
, ¬∃

1
)

∃(
1
, ¬∃

1
)

∃(
1
, ¬∃

1
∧ ∃

1
)

(Partial lift)

(Lift) Negation of the tautology ¬∃ ⇒ ∀(
1
, ¬∃

1
∨ ∃

1 2
) with the

meaning “There is no node with a loop implies for all nodes, there is no loop
or there is a second node” yields ¬∃ ∧ ∃(

1
, ∃

1
∧ ¬∃

1 2
) and no rule

other than (Lift) is applicable. Note, partial resolve is not applicable because
the (M-)pushout complement is non-existent.

∅
b

a
m

(Supporting lift) Negation of the tautology ∃
1

⇒ ∀(
1
, ∃

1
∨∃

1 2
) with

the meaning “There is a node with a loop implies for all nodes, the node has
a loop or there is a second node with a loop” yields ∃

1
∧ ∃(

1
, ¬∃

1
∧

¬∃
1 2

) and no rule other than (Supporting lift) is applicable.

4 Implementation

In this section, we discuss practical aspects of a theorem prover based on K. The
deduction rules represent the main computation steps a theorem prover based

13

on K will perform. Besides an implementation of those deduction rules, one re-
quires a method that transforms any condition into conjunctive M-normal form.
The equivalences depicted in Figure 2, strictly read from left to right, can be
applied as long as possible to transform any condition into an (optimized) con-
dition in conjunctive M-normal form. In [Pen04], the equivalences are proven
and it is shown that an as long as possible application yields the desired nor-
mal form. Another implementational aspect is the prevention of redundancy of

∃a ≡ ∃(a, true)
∀(a, c) ≡ ¬∃(a,¬c)
∃(a, c) ≡ false if a 6∈ M
¬¬c ≡ c

¬true ≡ false
¬false ≡ true

¬(∨j∈J cj) ≡ (∧j∈J ¬cj)
¬(∧j∈J cj) ≡ (∨j∈J ¬cj)

((∧j∈J cj) ∨ c) ≡ (∧j∈J (cj ∨ c))

∃(id, c) ≡ c

∃(a, false) ≡ false
∃(a, ∃(b, c)) ≡ ∃(b ◦ a, c)

∃(a, ∨j∈J cj) ≡ ∨j∈J ∃(a, cj)
∨j∈J cj ≡ true if ∃k∈ J. ck = true
∨j∈J cj ≡ ∨j∈Jr{k} cj if ∃k∈ J. ck =false
∧j∈J cj ≡ ∧j∈Jr{k} cj if ∃k∈ J. ck =true
∧j∈J cj ≡ false if ∃k∈ J. ck = false
∨j∈∅ cj ≡ false
∧j∈∅ cj ≡ true

Fig. 2. Equivalences for conjunctive M-normal form

rule applications with the intent to contain non-termination as far as possible.
For example, any of the rules (Partial lift), (Lift) or (Supporting lift) may add
subconditions to a conjunction that are already present anyway. Repeated appli-
cation of such a rule on its own resolvent would lead into an infinite redundant
branch of the search space. In theses cases, a notion of structural equivalence can
help to filter out double subconditions and to prevent unnecessary deductions:
Two conditions c, d are said to be structurally equivalent, denoted by c =̂ d, if
c = true = d, or if c = ¬c′, d = ¬d′ and c′, d′ are structurally equivalent, or if
c = (c1 ∧ c2), d = (d1 ∧ d2) and at least (c1, d1 and c2, d2) or (c1, d2 and c2, d1)
are structurally equivalent (case ∨ analogous), or if c = ∃(a, c′), d = ∃(a, d′) and
c′, d′ are structurally equivalent. The applicability of deduction rules may then
be restricted to those cases for which the resolvent is not structurally equiva-
lent to already existing conditions. Except for the rule (Supporting lift), this
effectively prevents recursive application of rules to derived conditions.

5 Related Work

In this section, we briefly relate our results to other work. Earliest attempts to
find deduction rules for graphical conditions are made by Koch et. al. [KMP05],
but remain incomplete. They investigate the notion of conflicting conditions of
the form ∀(I →X, ∃(X →C)) and state prerequisites under which a conjunction
of two graph conditions of this form is unsatisfiable.

Independently to our work, Orejas et. al. [OEP08] investigate sound and com-
plete calculi for three fragments of graph conditions: the fragment of Boolean

14

conditions over basic existential conditions ∃(I →C), the fragment of Boolean
conditions over basic existential conditions ∃(I →C) and non-negated “atomic”
conditions of the form ∀(I →X, ∃(X →C)), and the fragment of Boolean Condi-
tions over “atomic” conditions of the form ∀(I →X, ∃(X →C)). Their deduction
rules relate to our own as follows: (R1) is a special case of (Resolve), (R2) is com-
parable to the rule (Supporting Lift), and (R3) is comparable to the rule (Partial
lift), although (R2), (R3) do not lift (parts of) the resolvent (as this is neither
necessary nor possible for the considered fragments of conditions). The operator
⊕ is a special instance of A2 restricted to basic existential conditions. In [Ore08],
a sound and complete calculus for the fragment of “basic” and “positive atomic”
attributed graph constraints is presented. Attributed graph constraints are con-
ditions over attributed graphs combined with a formula expressing conditions
on the attributes such as “(x > y)”.

An alternative approach to apply theorem proving to graph transformation is
a translation into logical formulas [Cou90]. Following this idea, Strecker [Str08]
models graph transformation in the proof assistant Isabelle. His approach sup-
ports the manual verification of formulas of “a fragment of first-order logic en-
riched by transitive closure”.

The relation to our previous work is as follows: In [Pen08], a correct and
complete satisfiability algorithm named SeekSat is described. For the fragment
of Boolean conditions over basic existential conditions ∃a, SeekSat is shown
to terminate, thus is able to decide. While SeekSat covers contradictions with
finite counterexamples and tautologies in the decidable fragment of conditions,
the presented calculus K is intended to cover all tautologies with finite proofs.

6 Conclusion

In this paper, we presented a calculus for conditions over adhesive high-level
replacement categories. We took resolution [Rob65] as an ideal and postulated six
deduction rules able to refute conditions in conjunctive normal form. We proved
that every rule application corresponds to a logical deduction, and investigated
whether or not omission of any rule leads to an incomplete calculus. We discussed
practical aspects concerning an implementation such as filtering out structural
equivalent conditions, and briefly compared our results with related work. An
implementation of K is currently under development. Future topics include

− a proof of the completeness of the calculus,

− a systematic evaluation of the implementation. Currently, all 74 example
tautologies generated from correct program specifications of the “access con-
trol” example in [HPR06] can be proved in average 9.1 seconds (median 0.1s)
(Intel T5600, 1.83GHz).

Acknowledgment. Many thanks to the referees for thoroughly reviewing the
paper and suggesting several improvements.

15

References

[BFT06] P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the model evolution
calculus. Int. Journal on Artificial Intelligence Tools, 15(1):21–52, 2006.

[Cou90] B. Courcelle. Graph rewriting: An algebraic and logical approach. In Hand-
book of Theoretical Computer Science, volume B of volume, pages 193–242.
Elsevier, Amsterdam, 1990.

[DS89] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Seman-
tics. Springer, 1989.

[EEHP06] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Theory of constraints
and application conditions: From graphs to high-level structures. Funda-
menta Informaticae, 74:135–166, 2006.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Alge-
braic Graph Transformation. EATCS Monographs of Theoretical Computer
Science. Springer-Verlag, Berlin, 2006.

[HP01] A. Habel and D. Plump. Computational completeness of programming lan-
guages based on graph transformation. In Proc. FoSSaCS’01, volume 2030
of LNCS, pages 230–245. Springer, 2001.

[HP05] A. Habel and K.-H. Pennemann. Nested constraints and application condi-
tions for high-level structures. In Formal Methods in Software and System
Modeling, volume 3393 of LNCS, pages 293–308. Springer, 2005.

[HP08] A. Habel and K.-H. Pennemann. Correctness of high-level transformation
systems relative to nested conditions. MSCS, 2008. Accepted for publication.

[HPR06] A. Habel, K.-H. Pennemann, and A. Rensink. Weakest preconditions for
high-level programs. In Proc. ICGT’06, volume 4178 of LNCS, pages 445–
460. Springer, 2006.

[HW95] R. Heckel and A. Wagner. Ensuring consistency of conditional graph gram-
mars. In SEGRAGRA’95, volume 2 of ENTCS, pages 95–104, 1995.

[KMP05] M. Koch, L.V. Mancini, and F. Parisi-Presicce. Graph-based specification
of access control policies. JCSS, 71:1–33, 2005.

[McC08] W. McCune. Homepage of Prover9, 2008. http://www.prover9.org/.
[OEP08] F. Orejas, H. Ehrig, and U. Prange. A logic of graph constraints. In Proc.

Fundamental Approaches to Software Engineering (FASE’08), volume 4961
of LNCS, pages 179–19. Springer, 2008.

[Ore08] F. Orejas. Attributed graph constraints. In Proc. ICGT’08, LNCS. Springer,
2008. This volume.

[Pen04] K.-H. Pennemann. Generalized constraints and application conditions for
graph transformation systems. Master’s thesis, Department of Computing
Science, University of Oldenburg, Oldenburg, 2004.

[Pen08] K.-H. Pennemann. An algorithm for approximating the satisfiability problem
of high-level conditions. In Proc. GT-VC’07, volume 213 of ENTCS, pages
75–94. Elsevier, 2008.

[Ren04] A. Rensink. Representing first-order logic by graphs. In Proc. ICGT’04,
volume 3256 of LNCS, pages 319–335. Springer, 2004.

[Rob65] J.A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23–41, 1965.

[RV02] A. Riazanov and A. Voronkov. The design and implementation of VAM-
PIRE. AI Communications, 15(2-3):91–110, 2002.

[Str08] M. Strecker. Modeling and verifying graph transformations in proof as-
sistants. In Proc. Termgraph’07, volume 203 of ENTCS, pages 135–148.
Elsevier, 2008.

16

