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We introduce the notions of nested constraints and application conditions, short nested

conditions. For a category associated with a graphical representation such as graphs,

conditions are a graphical and intuitive, yet precise formalism, well-suited to describe

structural properties. We show that nested graph conditions are expressively equivalent

to first-order graph formulas. A part of the proof includes transformations between two

satisfiability notions of conditions, namely M-satisfiability and A-satisfiability. We

consider a number of transformations on conditions that can be composed to construct

constraint-guaranteeing and constraint-preserving application conditions, weakest

preconditions, and strongest postconditions. The restriction of rule applications by

conditions can be used to correct transformation systems by pruning transitions leading

to states violating given constraints. Weakest preconditions and strongest postconditions

can be used to verify the correctness of transformation systems with respect to pre- and

postconditions.
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1. Introduction

In the context of increasingly larger and more complex systems that hardware and soft-
ware engineers have to construct, visual modeling techniques can be expected to play
a key role in the future. More than 30 years ago, graph replacement was proposed as
a generalization of string replacement with the intent to yield an operational notation
that captures and inherits the advantage of graphs – the ability to directly visualize re-
lationships between elements. Especially the operational behavior of structure changing
systems such as “mobile” systems (in the sense of dynamically changing communication
topologies) is suited to be modeled by graph transformation rules (Ehrig et al. 1991).

Yet surprisingly, little effort was made to transfer the idea of a graph-based formalism
to logical languages – until now. In this paper, we investigate nested conditions for
graphs and high-level structures (Heckel and Wagner 1995; Koch et al. 2005; Ehrig et al.
2006b). For the category of graphs, nested conditions are a visual and intuitive, yet precise
formalism, well-suited to describe structural properties of system states. We propose to
model structure-changing systems by a graph or high-level replacement system and to
model the required system properties by nested conditions.

However, the use of visual modeling techniques alone does not guarantee the correctness
of a design. As standards for trustworthy systems grow, there is an increasing need for
methods that support the development of correct transformation systems. We investigate
two approaches: First, the construction of constraint-guaranteeing and weaker constraint-
preserving conditions that restrict the applicability of rules to correct situations. Second,
the verification of transformation systems with respect to pre- and postconditions. A well-
known method is to construct a weakest precondition relative to the postcondition and
to prove that the precondition implies the weakest precondition (Dijkstra 1976; Dijkstra
and Scholten 1989).

rule ρ

postcondition d

precondition c
Wp

weakest
precondition

Decide c ⇒ wp
yes/no

Figure 1. Decider for the correctness problem for transformation rules

As proposed in (Rensink 2004), we extend the existing notion of constraints and appli-
cation conditions, conditions for short, to nested conditions and show that nested graph
conditions and first-order graph formulas are expressively equivalent. We describe the
construction of constraint-guaranteeing and constraint-preserving conditions as well as
the computation of weakest preconditions and strongest postconditions with the help of
certain basic transformations on conditions. Additionally, we investigate two notions of
condition satisfiability and rule matching and show that the satisfiability and matching
notions, respectively, are equivalent under reasonable assumptions. We are interested
in conditions over graph-like structures. To avoid similar investigations for comparable
structures, we abstract from specific definitions and conduct our research in the frame-
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work of weak adhesive high-level replacement categories, HLR for short. Therefore, our
results hold for replacement-capable structures such as Petri-nets, graphs, and hyper-
graphs. To illustrate the presented constructions, examples are given in the category of
directed, labeled graphs.

The paper is organized as follows. In Section 2, we recall the notions of graphs and weak
adhesive HLR categories as a framework for high-level structures and recount their basic
properties. In Section 3, we introduce nested conditions for weak adhesive HLR categories.
In Section 4 and Section 5, we investigateM- and A-satisfiability for conditions and A-
andM-matching for rules. For weak adhesive HLR categories with epi-M-factorizations,
M-initial object and a monomorphism classM strictly closed under decompositions, we
show thatM- and A-satisfiability, and A- andM-matching are expressively equivalent.
In Section 6, we prove the basic transformation results, which are applied in Section 7 to
yield constraint-guaranteeing and constraint-preserving application conditions as well as
weakest preconditions and strongest postconditions. Finally, in Section 8, we investigate
the expressiveness of nested graph conditions and show that nested graph conditions and
first-order graph formulas are expressively equivalent. A conclusion including further
work is given in Section 9.

This paper succeeds (Ehrig et al. 2006b), is a revised version of (Habel and Penne-
mann 2005; Habel and Pennemann 2006) and contains parts of (Habel et al. 2006) con-
cerning transformation rules. Additionally, we present transformations between graph
conditions and semantically equivalent first-order graph formulas, consider the example
of a handover-protocol in cellular networks, and investigate the construction of strongest
postconditions.

2. Graphs and high-level structures

In this paper, we consider graphs as a typical structure suited to model discrete as-
pects of system states. Our motivation for considering graphs is that they are a general
structure and their graphical representation is able to directly visualize relationships be-
tween elements. In this section, we recall the basic notions of directed, labeled graphs
(Ehrig 1979; Corradini et al. 1997) and generalize them to high-level structures (Ehrig
et al. 1991). The idea behind the consideration of high-level structures is to avoid similar
investigations for similar structures such as Petri-nets, graphs, and hypergraphs.

Directed, labeled graphs and graph morphisms are defined as follows.

Definition 1 (graphs and graph morphisms). Let C = 〈CV,CE〉 be a fixed, finite,
disjoint label alphabet. A graph over C is a system G = (VG,EG, sG, tG, lG,mG) con-
sisting of two finite sets VG and EG of nodes (or vertices) and edges, source and target
functions sG, tG: EG → VG, and two labeling functions lG: VG → CV and mG: EG → CE.
A graph with empty set of nodes is empty and denoted by ∅. A graph morphism g:G→ H

consists of two functions gV: VG → VH and gE: EG → EH that preserve sources, targets,
and labels, that is, sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG, lH ◦ gV = lG, and mH ◦ gE = mG.
A morphism g is injective (surjective) if gV and gE are injective (surjective), and an
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isomorphism if it is both injective and surjective. The composition h ◦ g of g with a
morphism h:H →M consists of the composed functions hV ◦ gV and hE ◦ gE.

For simplicity, we sometimes consider a single labeling function lG: VG+EG → CV∪CE

with lG(VG)⊆CV and lG(EG)⊆CE, where + denotes the disjoint union. Of course, two
labeling functions for nodes and edges, respectively, can be composed into one, and vice
versa.

Example 1. Consider the graphs G and H and the injective graph morphism g:G→ H

given in the figure below. G and H are graphs over the label alphabet C = 〈{A,B}, {�}〉,
where the symbol � stands for the invisible edge label and is not drawn. Note that the
graph G contains a loop; the graph H contains two parallel edges and a loop.

A
1

B 2

A
3

G

A
1

B 2

A
3

H

g

In drawings of graphs, nodes are drawn by circles carrying the node label inside; edges
are drawn by arrows pointing from the source to the target node and the edge label is
placed next to arrow. Arbitrary graph morphisms are drawn by usual arrows “→”; the
use of “↪→” indicates an injective graph morphism. For graph morphisms, the mapping
of nodes is depicted by indices, if necessary.

Example 2 (GSM graph). In the Global System for Mobile Communications (GSM),
mobile stations (MS) are connected by wireless links with the cellular network of their
operators. Such a network consists of mobile services switching centers (MSC) managing
a number of base station controllers (BSC) which control a number of base transceiver
stations (BTS). In this running example, we model selected aspects of the handover
procedure (ETSI TS 100 527) between two base station controllers of a mobile services
switching center, the so-called inter-BSC-intra-MSC handover. States of the GSM are
represented as graphs. The following elements are modeled as labeled nodes: MSC and
BSC , base transceiver stations , mobile stations , and mobile station records , i.e.
mobile stations as seen by the network and its components.

Relations between these elements are modeled by labeled edges: physical connections
including wireless ones are modeled by solid edges ( ), logical or virtual connections by
dotted edges ( ), while certain messages exchanged between mobile stations and BSCs
in the stages of the handover procedure are modeled by request (

req
), command (cmd) and

complete edges (
cpl

), respectively. Undirected edges represent a pair of directed edges in
opposite directions.

BSC

MSC
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In the sense of category theory, graphs and graph morphisms form a category.

Fact 1 (Ehrig 79). Graphs and graph morphisms form the category Graphs.

The following considerations are done on the level of objects and morphisms with specific
properties, so-called weak adhesive HLR categories. The objects can be all kinds of
structures which are of interest in computer science and mathematics, e.g. Petri-nets,
(hyper)graphs, and algebraic specifications, the morphisms can be net, (hyper)graph,
and specification morphisms, respectively. Readers interested in the category-theoretic
background of these concepts may consult, e.g. (Adamek et al. 1990; Ehrig et al. 2006c).

For a category C, let A be the class of all morphisms.

Definition 2 (weak adhesive HLR category). A category C with a morphism class
M⊆ A is a weak adhesive HLR category, if the following properties hold:
(1)M is a class of monomorphisms closed under isomorphisms, composition, and de-

composition. I.e. for morphisms g ◦ f : f ∈ M, g isomorphism (or vice versa) implies
g ◦ f ∈M; f, g ∈M implies g ◦ f ∈M; and g ◦ f ∈M, g ∈M implies f ∈M.

(2) C has pushouts and pullbacks alongM-morphisms, i.e. pushouts and pullbacks, where
at least one of the given morphisms is in M, and M-morphisms are closed under
pushouts and pullbacks, i.e. given a pushout (1), m ∈ M implies n ∈ M and, given
a pullback (1), n ∈M implies m ∈M.

A

B

C

D

m n(1)

(3) Pushouts in C along M-morphisms are weak VK-squares, i.e. for any commutative
cube in C where we have the pushout with m ∈ M and (f ∈ M or b, c, d ∈ M) in
the bottom and the back faces are pullbacks, it holds: the top is pushout iff the front
faces are pullbacks.

A′

A C

C ′

f

cB′

B D

D′

b d
m

Fact 2 (Ehrig et al. 2006c). The category 〈Graphs, Inj 〉 of graphs with class Inj
of all injective graph morphisms is a weak adhesive HLR category. Further examples of
weak adhesive HLR categories are the categories of hypergraphs with class of all injective
hypergraph morphisms, place-transition nets with class of all injective net morphisms,
and algebraic specifications with class of all strict injective specification morphisms.

Weak adhesive HLR categories have a number of nice properties, called HLR properties
(Ehrig et al. 1991).
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Fact 3 (HLR properties of weak adhesive HLR categories). Given a weak adhe-
sive HLR category 〈C,M〉, the following HLR conditions are satisfied.
(1) Pushouts alongM-morphisms are pullbacks.
(2) Pushout-pullback decomposition. If the diagram (1)+(2) is a pushout, (2) a pullback,

w ∈M and (l ∈M or c ∈M), then (1) and (2) are pushouts and also pullbacks.

A C E

B D F

c r

u w

l s v(1) (2)

(3) Uniqueness of pushout complements for M-morphisms. Given morphisms c:A → C

in M and s:C → D, then there is up to isomorphism at most one B with l:A → B

and u:B → D such that diagram (1) is a pushout.

Proof. See (Lack and Sobociński 2004; Ehrig et al. 2006c).

For some results in this paper, we use the following properties.

Definition 3. Let 〈C,M〉 be a weak adhesive HLR category. 〈C,M〉 has pushouts, if for
each pair of arbitrary morphisms, there is a pushout. 〈C,M〉 has an epi-M-factorization
if, for every morphism, there is an epi-mono-factorization with monomorphism inM and
this decomposition is unique up to isomorphism. 〈C,M〉 has anM-initial object if there
is some object I in C such that, for every object G in C, there exists a unique morphism
iG: I → G and iG is in M. We refer to iG as initial M-morphism to G. M is strictly
closed under decomposition if g ◦ f ∈M implies f ∈M.

Fact 4. The weak adhesive HLR category 〈Graphs, Inj 〉 with Inj the class of all injective
graph morphisms has pushouts, an epi-Inj -factorization, an Inj -initial object, and Inj is
strictly closed under decompositions.

Proof. The category Graphs has pushouts, see e.g. (Ehrig et al. 2006c), Fact A.19.
It has epi-mono factorizations (A.15) and the monomorphisms are exactly those mor-
phisms that are injective (A.14 and Fact 2.15). The empty graph is an Inj -initial object
in 〈Graphs, Inj 〉. The class Inj of injective graph morphisms is strictly closed under
decompositions because the class of injective mappings has this property.

3. Conditions and rules

In search for a graphical formalism to specify sets of objects as well as morphisms, we
investigate nested conditions for graphs and high-level structures. We use the framework
of weak adhesive HLR categories and introduce nested conditions and rules for high-level
structures like Petri nets, (hyper)graphs, and algebraic specifications.

Assumption 1. We assume that 〈C,M〉 is a weak adhesive HLR category withM-initial
object I.

Syntactically, nested conditions may be seen as a tree of morphisms equipped with certain
logical symbols such as quantifiers and connectives.
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Definition 4 (conditions). A (nested) condition over an object P is of the form true
or ∃(a, c), where a:P → C is a morphism and c is a condition over C. Moreover, Boolean
formulas over conditions over P yield conditions over P , i.e., ¬c and ∧j∈J cj are (Boolean)
conditions over P , where J is an index set and c, (cj)j∈J are conditions over P . Addi-
tionally, ∃a abbreviates ∃(a, true), ∀(a, c) abbreviates ¬∃(a,¬c), false abbreviates ¬true,
∨j∈J cj abbreviates ¬∧j∈J ¬cj and c⇒ d abbreviates ¬c ∨ d.

Every object and morphism satisfies true. A morphism p satisfies a condition ∃(a, c),
if there exists a morphism q inM such that q ◦ a = p and q satisfies c.

P

G

C,a

p q
=

c

|=
)∃(

An object G satisfies a condition ∃(a, c), if the condition is over the initial object I and
the initial morphism iG: I → G satisfies the condition. The satisfaction of conditions by
objects and morphisms is extended onto Boolean conditions in the usual way. We write
G |= c resp. p |= c to denote that the object G resp. the morphism p satisfies c. Two
conditions c and c′ are equivalent, denoted by c ≡ c′, if, for all morphisms p, p |= c iff
p |= c′.

In the context of objects, conditions are also called constraints (Heckel and Wagner 1995)
and, in the context of rules, conditions are also called application conditions.

Example 3. For graph morphisms with domain
1
, the graph condition c = ∃(

1
→

1
) ∨ ∃(

1
→

1
) has the meaning “The image of the node has a proper outgoing

or incoming edge”. For graphs, one may consider the universal closure ∀(∅ →
1
, c) with

the meaning “All nodes have an outgoing or incoming proper edge”.

Notation. For a morphism a:P → C in a condition, we just depict the codomain C,
if the domain P can be unambiguously inferred, i.e. if it is known over which object a
condition is. For instance, as constraints are always over the initial object, the constraint
∀(∅ →

1
, ∃(

1
→

1 2
)) meaning “Every node has an outgoing edge to a distinct node”

can be represented by ∀(
1
, ∃(

1 2
)).

Example 4 (GSM conditions). Consider the GSM graph model in Example 2. Struc-
tural requirements on the GSM states can be described by graph constraints, i.e. graph
conditions over the empty graph.

(c1) Every transceiver station has exactly one controller:

∀( , ∃( BSC ) ∧ ¬∃( BSC BSC ))

(c2) No mobile station is associated to two or more mobile station records and vice versa:

¬∃( ) ∧ ¬∃( )

(c3) Every mobile station record is associated with a base transceiver station:

∀( , ∃( BSC ))
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(c4) There is no mobile station connected to two or more base transceiver stations and
no mobile station with two channels at a transceiver station:

¬∃( ) ∧ ¬∃( )

(c5) Every logical connection between a base transceiver station and a mobile station
record correspond with a physical connection between the network and the mobile
station:

∀

 BSC , ∃

 BSC


(c6) Between a base transceiver station and mobile station record, there are not two
logical connections, nor a logical connection and a handover complete message edge:

¬∃( BSC ) ∧ ¬∃(
cpl

BSC )

(c7) Every wireless connection between a mobile and a transceiver station is reflected by
the network:

∀

 , ∃

 BSC


Let consistency = ∧7
j=1cj denote the conjunction of the GSM conditions. A GSM graph

is said to be consistent, if it satisfies the graph condition consistency.

Remark. Nested conditions, as proposed in (Rensink 2004), subsume the previous no-
tions of basic constraints and application conditions. For every condition in the sense
of (Koch et al. 2005; Ehrig et al. 2006b), there is an equivalent condition according to
Definition 4. The presented notion of conditions correspond to the notions in (Habel
and Pennemann 2005) with one difference: Only constraints over the initial object are
considered. This is no restriction, as every constraint over P in the sense of (Habel and
Pennemann 2005) can be transformed into an equivalent constraint over the initial object
I, e.g. ∃(a, c) may be transformed into ∀(iP ,∃(a, c)). By this modification, we obtain a
common notion of equivalence for objects and morphisms.

In the following, we show that the concepts of constraints and application conditions
coincide in terms of equivalence. We use this fact in Section 4 by defining transformations
for conditions that may be used for constraints as well as application conditions. Note
that the add-on [inM] is optional.

Fact 5 (equivalence). For conditions c, c′ over I, for all morphisms p [inM], p |= c ⇔
p |= c′ iff for all objects G, G |= c ⇔ G |= c′.

Proof. Only if. Assume, for all morphisms p [in M], p |= c ⇔ p |= c′. In particular,
this means for objects G, iG |= c ⇔ iG |= c′ where iG is the initial M-morphisms to
G. By Definition 4, we conclude for every object G, G |= c ⇔ G |= c′. If. Conversely,
if for every object G, G |= c ⇔ G |= c′, then iG |= c ⇔ iG |= c′ where iG is the initial
M-morphism to G. Let p: I → G be any morphism. By the M-initiality of I, we know
that p = iG [inM], therefore we conclude for all morphisms p [inM], p |= c⇔ p |= c′.
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Conditions are allowed to consist of morphisms not inM. In context of rules, such con-
ditions are useful as application conditions to specify the identification/non-identification
of elements. However, for constraints, the use of morphisms not in M does not increase
the expressiveness. We show that every condition over I can be transformed into M-
normal form.

Definition 5 (M-normal form). A condition is inM-normal form, if for all subcon-
ditions of the form ∃(a, c), the morphism a is inM.

Fact 6 (M-normal form). For every condition c over I, there is an equivalent condition
MNF(c) inM-normal form.

Construction. Define MNF(true) = true and

MNF(∃(a, c′)) =
{

false if a 6∈ M
∃(a, MNF(c′)) otherwise.

For Boolean conditions, the transformation is extended in the usual way, i.e.MNF(¬c′) =
¬MNF(c′) andMNF(∧j∈J cj) = ∧j∈J MNF(cj).

Proof. Obviously, for every condition c, MNF(c) is in M-normal form. By structural
induction, we show for every p ∈ M, p |= c iff p |= MNF(c). Basis. For c = true, we
have c = true =MNF(true) =MNF(c). Hypothesis. Assume, for every p ∈M, p |= c′

iff p |=MNF(c′) and p |= cj iff p |=MNF(cj) for every j ∈ J . Step. Let c = ∃(a, c′). If
a ∈M, then we have, for every p ∈M, p |=MNF(c) =MNF(∃(a, c′)) = ∃(a, MNF(c′))
iff p |= ∃(a, c′) = c by the definition of MNF and the induction hypothesis. Otherwise
a 6∈ M, andMNF(∃(a, c′)) = false. We show, for every p ∈M, p |= ∃(a, c′) iff p |= false.
Only if. Assume morphism p in M satisfies ∃(a, c′). Then there is a morphism q in M
with p = q ◦ a. However, p, q in M and M closed under decomposition implies a ∈ M,
contradiction. If. No morphism satisfies false, therefore for every morphism p, p |= false
implies p |= ∃(a, c′). For Boolean formulas over conditions, the statement follows directly
from the definitions and the inductive hypothesis. For c = ¬c′, we have, for every p ∈M,
p |=MNF(c) =MNF(¬c′) = ¬MNF(c′) iff p |= ¬c′ = c. For c = ∧j∈J cj , we have, for
every p ∈M, p |=MNF(c) =MNF(∧j∈J cj) = ∧j∈J MNF(cj) iff p |= ∧j∈J cj = c.

Remark (M-satisfiability). The satisfaction of a condition is established by the pres-
ence and absence of certain morphisms from the objects within the condition to the
tested object. The presented satisfiability notion restricts these morphisms to the class
M: no identification of nodes and edges is allowed. Hence explicit counting such as the
existence/non-existence of n nodes or n edges is easily expressible. We speak of M-
satisfiability andM-satisfiable conditions.

BesideM-satisfiability one may consider A-satisfiability/A-satisfiable conditions, where
A denotes the class of all morphisms. The definition of A-satisfiability is obtained from
the one of M-satisfiability, by replacing all occurrences of M by A, or by deleting all
occurrences of “inM”, respectively.
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Definition 6 (A-satisfiability). Every object and morphism A-satisfies true. An ob-
ject G A-satisfies a condition ∃(a, c), if the condition is over the initial object I and
the initial morphism iG: I → G A-satisfies the condition. A morphism p A-satisfies a
condition ∃(a, c), if there exists a morphism q such that q ◦ a = p and q A-satisfies c.
The A-satisfaction of conditions by objects and morphisms is extended onto Boolean
conditions in the usual way. We write G |=A c resp. p |=A c to denote that the object G

resp. the morphism p A-satisfies c. Two conditions c and c′ are A-equivalent, denoted by
c ≡A c′, if, for all morphisms p, p |=A c iff p |=A c′.

Remark (A-satisfiability). A-satisfiability allows nodes or edges of the conditions to
be identified and is closely related to the satisfiability of first-order formulas as indicated
in Section 8 for the case of directed, labeled graphs. In Section 4, we will see that,
under reasonable assumptions,A- andM-satisfiability are expressively equivalent. Unless
explicitly stated, theorems concern M-satisfiable conditions.

Example 5 (A-satisfiability). The meaning of the graph condition ∃(
1
→

1
) for

graph morphisms with domain
1
w.r.t. A-satisfiability is: “There exists an outgoing edge

(proper edge or loop)”.

In the following, we consider rules with application conditions (Ehrig et al. 2006b; Habel
and Pennemann 2005). Examples and pointers to the literature can be found in (Ehrig
1979; Corradini et al. 1997).

Definition 7 (rules). A plain rule ρ = 〈L←↩ K ↪→ R〉 consists of two morphisms inM
with a common domain K. L is called the left-hand side, R the right-hand side, and K

the interface. An application condition ac = 〈acL, acR〉 for ρ consists of two conditions
over L and R, respectively. A rule ρ̂ = 〈ρ, ac〉 consists of a plain rule ρ and an application
condition ac for ρ.

L K R

DG H

l r

m m∗(1) (2)

acL

=|

acR

|=

Given a plain rule ρ and a morphism K → D, a direct derivation consists of two
pushouts (1) and (2). We write G ⇒ρ,m,m∗ H or short G ⇒ρ Hand say that m is the
match and m∗ is the comatch of ρ in H. Given a rule ρ̂ = 〈ρ, ac〉 and a morphism K → D,
there is a direct derivation G⇒ρ̂,m,m∗ H if G⇒ρ,m,m∗ H, m |= acL, and m∗ |= acR.

Example 6. Consider the graph replacement rule with inclusions given in Figure 2. Then
there is an injective graph morphism from the left-hand side L of the rule to the graph
G, fixed by the numbers beside the nodes, that satisfies the so-called gluing condition
(Ehrig 1979). The removement of m(L−K) yields the graph D and the addition R−K

yields the graph H. The match m satisfies the left application condition ¬∃( →
); the comatch m∗ satisfies the right application condition ¬∃( → ).

Both application conditions guarantee that multiple edges cannot arise.
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1

3

2

L

1 2

K

1 2

R

1 2

D

1

3

2

G

1 2

H

1

3

2 1 2

m m∗
(1) (2)

Figure 2. Application of a graph replacement rule

Remark (A- and M-matching). Matching, also called A-matching, is the process
of finding arbitrary matching morphisms. Besides A-matching, one may consider only
matches in M, called M-matching and denoted by ⇒M. M-matching restricts the ap-
plicability of rules: no identification of nodes and edges is allowed. Moreover,M-matching
allows explicit counting such as the deletion of n nodes or edges. In Section 5, it will be
shown that, under reasonable assumptions, A andM-matching are expressively equiva-
lent.

A set of transformation rules constitutes a transformation system.

Definition 8 (transformation system). A transformation system is a set of rules R.
A derivation is a sequence of direct derivations of rules in R.

Example 7 (GSM transformation system). Consider the GSM model in Example 2.
For simplicity, we select M-matching and denote a rule 〈L ←↩ K ↪→ R〉 shortly by
〈L⇒ R〉, where K consists of all elements common to L and R. The dynamics of the GSM
network is modeled by six graph transformation rules: BuildBSC and BuildBTS model
the extension of infrastructure. PhoneOn and its inverse PhoneOff model the operational
status of a mobile station. Login and its inverse Logout model the creation and deletion
of a mobile station record.

BuildBSC: 〈 MSC ⇒ MSC BSC 〉

BuildBTS: 〈 BSC ⇒ BSC 〉

PhoneOn: 〈 ∅ ⇒ 〉

PhoneOff: 〈 ⇒ ∅ 〉
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Login: BSC

MSC

⇒ BSC

MSC

, ¬∃

 BSC

MSC
 , true

Logout: BSC

MSC

⇒ BSC

MSC

The operational behavior of the handover protocol is modeled by the graph transforma-
tion rules Request, Command, Handover and Complete, representing a subdivision of the
handover operation into four phases. In the first phase, the necessity of the handover
is detected by the base station controller based on informations last received from the
transceiver station. A handover Request message is sent to the MSC which selects a new
BSC and forwards the message to it. In the second phase, the new BSC transfers the
handover Command through the old BSC to the MS, assigning it to a radio channel of
one of its base transceiver stations. In the third phase, the MS disconnects the old radio
channel and establishes the radio channel with the new BSC. If successful, the connection
to the old BSC is reestablished via the new BSC through its transceiver station. In the
last phase, the MS sends the handover Complete message to the old BSC, which releases
the old radio channels on its transceiver station.

Request:
BSC BSC

MSC
⇒

BSC BSC

MSC
req

Command: BSC
req

⇒ BSC
cmd

Handover: BSCBSC
cmd

⇒ BSCBSC
cpl

Complete: BSC
cpl

⇒
BSC

The question arises, whether or not the GSM transformation system is correct with
respect to the pre- and postcondition consistency, i.e. whether the application of the
GSM rules on a consistent GSM graph always results in a consistent graph.
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4. Satisfiability of conditions

In this section, we investigate the different satisfiability notions for conditions and show
that A-satisfiability and M-satisfiability are expressively equivalent. First, there is a
transformation from A- to M-satisfiability. In case pushouts for arbitrary pairs of mor-
phisms exist, this transformation of conditions has some similarities to the transformation
of constraints into application conditions in (Ehrig et al. 2006b) and the original paper
of (Heckel and Wagner 1995). In the case that the existence of pushouts cannot be guar-
anteed, one can resort to a modified transformation which requires an M-initial object
and makes use of the existence of pushouts along M-morphisms.

Theorem 1 (from A- to M-satisfiability). Let 〈C,M〉 be a weak adhesive HLR
category withM-initial object and epi-M-factorization. There is a transformation Msat
such that, for every condition c and for every morphism p, p |= Msat(c)⇔ p |=A c, and
for every condition c over I and for object G, G |= Msat(c)⇔G |=A c.

A-satisfiable conditions allow elements to be identified. The idea of the following con-
struction is to consider a disjunction of M-satisfiable conditions, one for each possible
level of identification. The construction of Msat(c) with single parameter of type condi-
tion is defined by the auxiliary transformation Msat(e, c) where the first parameter is of
type epimorphism and the second parameter is of type condition.

Construction. For a condition c over P , define Msat(c) = ∨e∈E′ ∃(e, Msat(e, c)) where
the set E ′ ranges over all epimorphisms with domain P . For every epimorphism e, the
transformation Msat(e, c) is defined inductively by Msat(e, true) = true and

Msat(e,∃(a, c′)) = ∨d∈E ∃(b, Msat(f, c′))

where, in the case that 〈C,M〉 has pushouts, (1) is the pushout of the morphisms a

and e leading to morphisms a′:P ′ → C ′ and e′:C → C ′ and the set E ranges over all
epimorphisms d with domain C ′ such that b = d ◦ a′ is inM and f = d ◦ e′.

Alternatively, construct the pushout (2) of the initial M-morphisms iC : I → C and
iP ′ : I → P ′ leading to morphisms a′:P ′ → C ′ and e′:C → C ′ and the set E ranges over
all epimorphisms d with domain C ′ such that b = d◦a′ is inM, f = d◦e′ and b◦e = f ◦a.

P ′

C ′

P

C

D

e

a

e′

a′

d
f

b

(1)

P ′

C ′

I

P

C

D

iP ′

iC

e

a

e′

a′

d
f

b

(2)

For Boolean formulas over conditions, the transformations Msat( ) and Msat( , ) are
extended in the usual way.
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Example 8. The meaning of condition c = ∃(
1 2

→
1 2

) for graph morphisms
w.r.t. A-satisfiability is “There exists an edge from the image of node 1 to the image of
node 2”. Msat(c) is constructed as follows:

Msat(c) = ∨e∈E ∃(e, Msat(e, c)) = ∃(id, Msat(id, c)) ∨ ∃(f, Msat(f, c))

= ∃(id, ∃(
1 2
→

1 2
)) ∨ ∃(f, ∃(

1
→

1
))

≡ ∃(
1 2
→

1 2
) ∨ ∃(

1 2
→

1=2
)

where f :
1 2
→

1=2
. The meaning of Msat(c) in case of M-satisfiability is “There is a

proper edge from the image of node 1 to a distinct image of node 2 or both images are
identical and there is a loop”.

Before we show Theorem 1, we prove a property for the auxiliary transformation Msat(e, c).

Lemma 1 (Msat(e, c)). Let 〈C,M〉 be a weak adhesive HLR category with M-initial
object and epi-M-factorization. For every condition c over P , every epimorphism e:P →
P ′, and every morphism p′:P ′ → G inM, p′ |= Msat(e, c)⇔ p′ ◦ e |=A c.

P ′

G

P
e

p′ p
=

cMsat(e, c)

|=A
=|

Proof. By structural induction.
Basis. For c = true, we have c = true = Msat(e, true) = Msat(e, c).
Hypothesis. Assume the statement holds for condition c′.
Step. For c = ∃(a, c′), we distinguish two cases:

Case 1. 〈C,M〉 has pushouts of arbitrary morphisms. Only if. Let p′ |= Msat(e,∃(a, c′)) =
∨d∈E ∃(b, Msat(f, c′)). There is some epimorphism d:C ′ → D with b = d ◦ a′ in M and
f = d ◦ e′ such that p′ |= ∃(b, Msat(f, c′)). By definition ofM-satisfiability, there is some
q′:D → G inM such that q′◦b = p′ and q′ |= Msat(f, c′). Define now q = q′◦f . Together
with q′ ◦ b = p′, b = d ◦ a′, a′ ◦ e = e′ ◦ a, f = d ◦ e′, we observe q ◦ a = p (p |= ∃a). By
inductive hypothesis, q |=A c′, therefore p |=A ∃(a, c′). If. Let p |=A ∃(a, c′). By definition
of A-satisfiability, there is some q:C → G such that q ◦a = p and q |=A c′. Let (1) be the
pushout of a:P → C and e:P → P ′. By the universal property of pushouts, there is some
g:C ′ → G with g◦a′ = p′ and g◦e′ = q. Let g = q′◦d be an epi-M-factorization of g with
epimorphism d and monomorphism q′ inM, b = d◦a′, and f = d◦e′. Since p′ and q′ are
inM, q′ ◦ b = p′, andM is closed under decomposition, the morphism b is inM and d is
in E . As p′ = g ◦a′, g = q′ ◦d and b = d◦a′, we observe p′ = q′ ◦ b (p′ |= ∃b). By inductive
hypothesis, q′ |= Msat(f, c′), therefore p′ |= ∨d∈E ∃(b, Msat(f, c′)) = Msat(e,∃(a, c′)).

Case 2. 〈C,M〉 has only pushouts alongM-morphisms. Only if. As above, by using
the morphism f :C → D and the inductive hypothesis. If. Let p |=A ∃(a, c′). By definition
of A-satisfiability, there is some q:C → G such that q ◦ a = p and q |=A c′. Since 〈C,M〉
has pushouts alongM-morphisms, we can construct the pushout (2) of theM-morphisms
iC : I → C and iP ′ : I → P ′ leading to morphisms a′:P ′ → C ′ and e′:C → C ′. By the
universal property of pushouts, there is some g:C ′ → G with g ◦ a′ = p′ and g ◦ e′ = q.
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Let g = q′ ◦ d be an epi-M-factorization of g with epimorphism d and monomorphism
q′ in M, b = d ◦ a′, and f = d ◦ e′. Since p′ and q′ are in M, q′ ◦ b = p′, and M is
closed under decomposition, the morphism b is in M and d is in E . It turns out that
q′ ◦ b ◦ e = q′ ◦ f ◦ a and, by the monomorphism property of q′, b ◦ e = f ◦ a. As b is
in M and f ◦ a = b ◦ e, the tuple 〈D, b, f〉 belongs to the construction. As p′ = g ◦ a′,
g = q′ ◦ d and b = d ◦ a′, we observe p′ = q′ ◦ b (p′ |= ∨d∈E ∃b). By inductive hypothesis,
q′ |= Msat(f, c′), therefore p′ |= ∨d∈E ∃(b, Msat(f, c′)) = Msat(e,∃(a, c′)).

P ′

C ′

P

C

(1)

D

G

e

a

e′

a′

d f

q′

pp′

g q

b

P ′

C ′

I

P

C

D

G

e

aiP ′

iC

e′

a′

d f

q′

p
p′

g q

b

(2)

For Boolean formulas over conditions, the statement follows from the definitions and the
inductive hypothesis. Consequently, the statement holds for all conditions.

Theorem 1 follows directly from Lemma 1.

Proof of Theorem 1. Let p:P → G be a morphism and p = p′ ◦ e an epi-M-factorization
of p with epimorphism e and monomorphism p′ in M. By Lemma 1, the definitions
of M-satisfiability, |=, and Msat(c) and the uniqueness of epi-M-factorizations up to
isomorphism, we obtain the statement for Msat: p |=A c ⇔ p′ |= Msat(e, c) ⇔ p |=
∃(e, Msat(e, c)) ⇔ p |= ∨e∈E′ ∃(e, Msat(e, c)) = Msat(c). Fact 5 lifts the result to
objects and conditions over I. �

Remark. The case differentiation “〈C,M〉 has pushouts” in the first construction of
Theorem 1 is not necessary, if one assumes that the conditions are in M-normal form.
However, in the context of A-satisfiability, this is a significant restriction, e.g., conditions
like “the morphism is in M” in the proof of Theorem 2 can only be expressed using
morphisms not inM.

Under certain assumptions, there is also a transformation fromM- to A-satisfiability.

Theorem 2 (fromM- to A-satisfiability). Let 〈C,M〉 be a weak adhesive HLR cat-
egory with epi-M-factorization and M strictly closed under decomposition. There is a
transformation Asat on conditions such that, for every condition c and for every mor-
phism p, p |=A Asat(c)⇔ p |= c, and for every condition c over I and for every object G,
G |=A Asat(c)⇔G |= c.

A-satisfiable conditions allow elements to be identified. The idea of the construction is
to prevent identification by expressing the property “the morphism is inM” by subcon-
ditions.
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Construction. For a morphism a:P → C and a condition c over C, Asat(true) = true
and Asat(∃(a, c′)) = ∃(a, inMC∧Asat(c′)) where inMC = ∧e∈E ¬∃e is a condition over C,
the conjunction ranges over all epimorphisms e:C → C ′ not inM. For Boolean formulas
over conditions, the transformation is extended in the usual way.

Example 9. The condition c = ∃(
1 2
→

1 2
) meaning for graph morphisms w.r.t.

M-satisfiability “There exists a proper edge from the image of 1 to the distinct image
of 2” is transformed into the condition Asat(c) = ∃(

1 2
→

1 2
, ¬∃(

1 2
→

1=2
))

meaning w.r.t. A-satisfiability “There exists an edge from the image of 1 to the image
of 2 and the images are distinct”.

Proof. First, we prove that for every morphism q:C → G, q |=A inMC iff q is in M.
Proof by contraposition. Only if. Assume q |=A inMC , but q not inM. Consider an epi-
M-factorization q = q′ ◦ e of q with epimorphism e and monomorphism q′ inM. Then e

is not inM, q |=A ∃e and q 6|=A inMC . Otherwise, by closure ofM under compositions,
e and q′ in M would imply q in M, contradiction. If. Assume q 6|=A inMC and q in M.
Then q |=A ∃e for some epimorphism e:C → C ′ not inM. Then there is some q′:C ′ → G

such that q′ ◦ e = q. Then q is not in M. Otherwise, by the strict closure of M under
decomposition, q inM would imply e inM, contradiction.

G

C C ′e

q q′=
)∃(

The statement for Asat is shown by structural induction:
Basis. For c = true, we have c = true = Asat(true) = Asat(c).
Hypothesis. Assume the statement holds for condition c′.
Step. For c = ∃(a, c′), we have the following. If. Let p |= ∃(a, c′). Then there is a
morphism q:C → G in M such that q ◦ a = p and q |= c′. By the inductive hypothesis
and the application condition inMC being equivalent to “morphism is inM”, q |=A inMC

and q |=A Asat(c′). Consequently, p |=A ∃(a, inMC ∧ Asat(c′)) = Asat(∃(a, c′)). Only
if. Let p |=A Asat(∃(a, c′)) = ∃(a, inMC ∧ Asat(c′)). Then there is some q:C → G such
that q ◦a = p, q |=A inMC , and q |=A Asat(c′). The property of inMC yields q ∈M, and
by the inductive hypothesis, q |= c′. Together, p |= ∃(a, c′). For Boolean formulas over
conditions, the statement follows from the definitions and the inductive hypothesis. This
completes the inductive proof. Fact 5 lifts the result to objects and conditions over I.

Fact 7. The construction above inserts the requirement “inM” behind every morphism
of the condition. However, it suffices to express that newly introduced elements are
distinct. An optimized transformation Asat can be defined as follows:

Asat(true) = true
Asat(∃(a, c′)) = ∃(a, inMC ∧Asat′(c′))

Asat′(true) = true
Asat′(∃(a, c′)) = ∃(a, inMa ∧Asat′(c′))

where inMa = ∧e∈E′ ¬∃e is a condition over C and E ′ is constructed as follows: Let E be
set of all epimorphisms e:C → C ′ not inM such that e ◦ a inM. The set E ′ consists of
all epimorphisms e ∈ E such that there is no (non-isomorphic) decomposition of e into
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epimorphisms e′′ ◦ e′ = e such that e′ ∈ E and e′′ not in M. For all morphisms p in M
and q with p = q ◦a, q |=A inMa iff q inM. Note, for the initialM-morphism iC : I → C,
inMiC

= inMC .

Proof. We show for all morphisms p inM and q with p = q ◦a, q |=A inMa iff q inM.
By contraposition. Let p be inM and p = q ◦ a.

P

G

C C ′a e

e ◦ a

p
q

q′
= =

Only if. Assume q |=A inMa, but q not in M. As in the proof of Theorem 2, consider
an epi-M-factorization q = q′ ◦ e of q with epimorphism e and monomorphism q′ inM.
Then e is not in M. Otherwise, by closure of M under compositions, e and q′ in M
would imply q inM. Moreover, e ◦ a inM. Otherwise, by q′ inM and the closure ofM
under decompositions, e◦a not inM would imply p not inM. Now e is an epimorphism
not inM and e◦a inM, therefore e ∈ E . If there is now a decomposition e′′ ◦e′ of e with
e′ ∈ E and e′′ not inM, let e = e′ from now and repeat this argument. If there is no such
decomposition, we have e ∈ E ′, and we conclude q |=A ∃e and q 6|=A inMa, contradiction.
If. Assume q 6|=A inMa and q inM. As in the proof of Theorem 2, q 6|=A inMa implies q

not inM, contradiction.

By Theorems 1 and 2, we obtain the following corollary.

Corollary 1 (equivalence). For weak adhesive HLR categories withM-initial object,
epi-M-factorization, and M strictly closed under decomposition, A-satisfiability and
M-satisfiability are expressively equivalent.

A-satisfiability
Asat

Msat
M-satisfiability

The equivalence result is valid for nested constraints and application conditions; it is not
valid for plain constraints in the sense of (Ehrig et al. 2006b), as the presented transfor-
mations increase the depth of nesting. As shown later in Section 8, the transformations
Msat and Asat are an important step in the conversion of graph conditions into first-order
graph formulas and vice versa.

5. Matching of rules

In this section, we investigate the different matching notions for rules and show that A-
and M-matching are expressively equivalent. First, there is a transformation from A-
to M-matching. We establish a Simulation Theorem saying that any direct derivation
with arbitrary matching can be simulated by a direct derivation withM-matching. This
extends the Simulation Theorem in (Habel et al. 2001) to weak adhesive HLR categories
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with epi-M-factorizations, in which a single rule is simulated by set of so-called quotient
rules.

More precisely, we introduce quotient constructions that transform plain rules and
conditions with respect to epimorphisms, e.g. epimorphism e as depicted below. To sup-
port both satisfiability notions of conditions independently of the matching notion, we
consider two quotient constructions for conditions, N and B.

L K R

L′ K ′ R′

l r

e e∗(1) (2)

ac

ac′

If the application condition ac is M-satisfiable, ac′ = N(e, ac), while ac′ = B(e, ac) in
the case of A-satisfiability.

Lemma 2 (quotients of conditions). Let 〈C,M〉 be a weak adhesive HLR category
with epi-M-factorization. There is a transformation N such that, for all conditions c over
P , and all morphisms p with domain P and epi-M-factorization p = p′ ◦ e,

p′ |= N(e, c) ⇐⇒ p |= c.

There is a transformation B such that, for all conditions c over P , all morphisms p with
domain P , and all factorizations p = p′ ◦ e (e is not required to be an epimorphism),

p′ |=A B(e, c) ⇐⇒ p |=A c.

Construction. N(e, true) = true and N(e,∃(a, c′)) = ∃(a′, c′) if e can be extended to
an epi-M-factorization of a, i.e. if there exists a morphism a′ inM such that a = a′ ◦ e,
otherwise N(e,∃(a, c′)) = false.

If 〈C,M〉 has pushouts of arbitrary morphisms, let B(e, true) = true and B(e,∃(a, c′)) =
∃(a′,B(e′, c′)) where (2) is the pushout of the morphisms a and e leading to the mor-
phisms a′ and e′.

Alternatively, let B(e, true) = true and B(e,∃(a, c′)) = ∨d∈E∃(a′,B(e′, c′)) and con-
struct the pushout (3) of the initial M-morphisms iP ′ and iC yielding the morphisms
a′′ and e′′ to object C ′, let the set E range over all epimorphisms d:C ′ → D such that
d ◦ e′′ ◦ a = d ◦ a′′ ◦ e and define a′ = d ◦ a′′ and e′ = d ◦ e′′.

P ′ P

C

e

a
a′

(1)
P ′

C ′

P

C

e

a

e′

a′ (2)

P ′

C ′

I

P

C

D

iP ′

iC

e

a

e′′

a′′

d
e′

a′

(3)

For Boolean formulas over conditions, the transformations are extended in the usual way.
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When the existence of pushouts of arbitrary morphisms cannot be guaranteed, transfor-
mation B preserves the logical structure and therefore the size of the condition. In case
the existence of pushouts cannot be guaranteed, transformation B is similar to the alter-
native construction of transformation Msat of Theorem 1, except that a′ is arbitrary and
not required to be inM, corresponding to just some epi-factorization and not necessarily
an epi-M-factorization.

Example 10. The condition ¬c = ¬∃(
1 2

→
1 2

) meaning for graph morphisms
w.r.t. A [M]-satisfiability “There does not exist a [proper] edge from the image of 1 to
the image of 2” is transformed by the surjective graph morphism e:

1 2
→

1=2
into

the condition B(e,¬c) = ¬B(e, c)) = ¬∃(
1=2
→

1=2
) [N(e,¬c) = ¬N(e, c) = ¬false = true]

meaning “There does not exist a loop at the common image of node 1 and 2” [“Always
satisfied”].

Example 11. The condition ¬c = ¬∃(
1 2
→

1=2
) meaning for graph morphisms w.r.t.

A- and M-satisfiability “There does not exist a loop at the common image of 1 and 2”
is transformed over e into the condition B(e,¬c) = ¬∃( → ) = N(e,¬c) meaning
“There does not exist a loop at the image of the node”.

Proof. By structural induction.
Case 1. Transformation N.

Basis. For c = true, we have c = true = N(e, true) = N(e, c).
Hypothesis. Assume the statement holds for condition c′.
Step. For c = ∃(a, c′), we have the following. Only if. Let p′ |= N(e,∃(a, c′)). As no
morphism satisfies false, N(e,∃(a, c′)) = ∃(a′, c′) for some morphism a′ in M with epi-
M factorization a = a′ ◦ e. Then there is some q:C → G in M such that q ◦ a′ = p′

and q |= c′. Moreover, q ◦ a = p. Consequently, p |= ∃(a, c′). If. Let p |= ∃(a, c′). Then
there is some q:C → G in M such that q ◦ a = p and q |= c′. Let a = a′′ ◦ e′ be an
epi-M-factorization of a with epimorphism e′:P → P ′′ and monomorphism a′′:P ′′ → C

in M. Then p′′ = q ◦ a′′ is in M. Since a = a′′ ◦ e′ is an epi-M-factorization of a,
p = q ◦ a = q ◦ a′′ ◦ e′ = p′′ ◦ e′ is an epi-M-factorization of p with epimorphism e′ and
monomorphism p′′ inM. As p = p′ ◦ e′ is also an epi-M-factorization, the uniqueness of
epi-M-factorizations yields e = e′, p′ = p′′, and a′ = a′′ (up to isomorphism). Therefore,
p′ |= ∃(a′, c′).

Case 2. Transformation B, 〈C,M〉 has pushouts of arbitrary morphisms.
Basis. For c = true, we have c = true = B(e, true) = B(e, c).
Hypothesis. Assume the statement holds for condition c′.
Step. For c = ∃(a, c′), we have the following. Only if. Let p′ |=A B(e,∃(a, c′)) =
∃(a′,B(e′, c′)). Then there is some q′:C ′ → G such that q′ ◦ a′ = p′ and q′ |=A B(e′, c′).
By inductive hypothesis, q′◦e′ |=A c′. Define q = q′◦e′. Then q◦a = q′◦e′◦a = p′◦e = p.
Consequently, p |=A ∃(a, c′). If. Let p |=A ∃(a, c′). Then there is some q:C → G such that
q ◦ a = p and q |=A c′. Construct pushout (2). By the universal property of pushouts,
there is a morphism q′:C ′ → G such that q′ ◦ a′ = p′ and q′ ◦ e′ = q. By inductive
hypothesis, q′ |=A B(e′, c′). Consequently, p′ |=A ∃(a′,B(e′, c′)) = B(e,∃(a, c′)).

Case 3. Transformation B, 〈C,M〉 has an M-initial object. The proof is similar to



A. Habel, K.-H. Pennemann 20

that of Msat of Theorem 1.
Basis. For c = true, we have c = true = B(e, true) = B(e, c).
Hypothesis. Assume the statement holds for condition c′.
Step. For c = ∃(a, c′), we have the following. Only if. As in Case 2, by case differentiation
for some d:C ′ → D, using the corresponding morphism e′:C → D and the inductive
hypothesis. If. Let p |=A ∃(a, c′). By definition of A-satisfiability, there is some q:C → G

such that q ◦a = p and q |=A c′. Since 〈C,M〉 has pushouts alongM-morphisms, we can
construct the pushout (3) of the M-morphisms iC : I → C and iP ′ : I → P ′ leading to
morphisms a′′:P ′ → C ′ and e′′:C → C ′. By the universal property of pushouts, there is
some u:C ′ → G with u ◦ a′′ = p′ and u ◦ e′′ = q. Let u = q′ ◦ d be an epi-M-factorization
of u with epimorphism d and monomorphism q′ inM, define a′ = d ◦ a′′ and e′ = d ◦ e′′.
It turns out that q′ ◦ a′ ◦ e = q′ ◦ e′ ◦ a and, by the monomorphism property of q′,
a′ ◦ e = e′ ◦a. Therefore, d belongs to the set E . As p′ = u ◦a′′, u = q′ ◦d and a′ = d ◦a′′,
we have p′ = q′ ◦a′ and p′ |= ∃a′. By inductive hypothesis, q′ |=A B(e′, c′). Consequently,
p′ |=A ∨d∈E ∃(a′,B(e′, c′)) = B(e,∃(a, c′)).

P ′′

P ′ Pe

C

G

e′

a′ a

q

p′p′′ p

(1)

P ′

C ′

P

C

(2)

G

e

a

e′

a′

q′ q

pp′

P ′

C ′

I

P

C

D

G

e

aiP ′

iC

e′′

a′′

d e′

q′

p
p′

u q

a′

(3)

For Boolean formulas over conditions, the statement follows from the definitions and the
inductive hypothesis. Consequently, the statement holds for all conditions.

Remark. In case of the alternative construction of transformation B, i.e. B(e, true) =
true and B(e,∃(a, c′)) = ∨d∈E∃(a′,B(e′, c′)), the set E may be restricted to a set E ′ with
d ∈ E ′, iff d ∈ E and there exist no d′ ∈ E and no epimorphism f not in M, such that
d = d′ ◦ f (d is more general than d′). In case of pushouts and M-initial objects, this
optimized transformation yields eventually the only one morphism d with the pushout
object of (2) as its codomain.

Now we are able to present a transformation from A- to M-matching. For simplicity,
we assume a fixed satisfiability notion. For a rule ρ, let JρKA and JρKM denote the sets
of pairs 〈G, H〉 with direct derivation G ⇒ρ,m,m∗ H through a match m in A and M,
respectively. The definition is extended to sets of rules R, i.e. JRKA =

⋃
ρ∈RJρKA and

JRKM =
⋃

ρ∈RJρKM.

Theorem 3 (from A- toM-matching). Let 〈C,M〉 be a weak adhesive HLR category
with epi-M-factorization, and, in the case of A-satisfiability, pushouts or an M-initial
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object. There is a transformation Q, such that for every rule ρ,

JρKA = JQ(ρ)KM.

Construction. For a rule ρ = 〈q, ac〉 with ac = 〈acL, acR〉, let Q(ρ) be the set of rules
ρ′ = 〈q′, ac′〉 where q′ is a quotient rule of q with respect to an epimorphism e, i.e., there
are two pushouts (1) and (2) with match e and comatch e∗ as below, and ac′ = 〈N(e, acL),
N(e∗, acR)〉 forM-satisfiability and 〈B(e, acL),B(e∗, acR)〉 otherwise.

L K R

L′ K ′ R′

l r

e e∗(1) (2)

acL

acL′

acR

acR′

Example 12. Consider the rule 〈
1 2
←↩

1 2
↪→

1 2
〉 with left application condition

ac = ¬∃(
1 2
→

1 2
) meaning w.r.t. A-matching and A-satisfiability “Add an edge,

provided there does not exist one”. Then the rule 〈 ←↩ ↪→ 〉 with left application
condition B( → , ac) = ¬∃( → ) (compare with Example 10) is a quotient
rule meaning w.r.t.M-matching “Add a loop at the node, provided there does not exist
one”.

Proof. If. Let G ⇒ρ′,n,n∗ H be a direct derivation through ρ′ = 〈q′, ac′〉 with ac′

as in the construction and n ∈ M. Then the diagrams (1), (2), (3) and (4) in the
figure below are pushouts and, by the Composition Lemma of pushouts, the composed
diagrams (1)+(3) and (2)+(4) are pushouts as well. Hence, there is a direct derivation
G ⇒q,m,m∗ H with m ∈ A. By assumption, n |= ac′L and n∗ |= ac′R (M-satisfiability)
or n |=A ac′L and n∗ |=A ac′R (A-satisfiability). By Lemma 2, m |= acL and m∗ |= acR.
Thus, G⇒ρ,m,m∗ H with m ∈ A.

L K R

L′ K ′ R′

DG H

l r

e e∗(1) (2)

n n∗(3) (4)

m m∗

Only if. Let G ⇒ρ,m,m∗ H be a direct derivation through ρ = 〈q, ac〉 with m ∈ A,
and let m = n ◦ e be an epi-M factorization of m with epimorphism e:L → L′ and
monomorphism n:L′ → G inM. Then there is a decomposition of the original diagrams
into diagrams (1) and (3), (2) and (4) as follows: Construct the object K ′ as a pullback
object of L′ → G ← D and denote the diagram by (3). By the universal property of
pullbacks, there is a unique morphism e′:K → K ′ such that K → K ′ → D = K → D

and diagram (1) commutes. By the pushout-pullback decomposition, (1) and (3) are
pushouts. Now construct the object R′ as the pushout object of K ′ ← K → R and
denote the diagram by (2). By the universal property of pushouts, there is a unique
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morphism n∗:R′ → H such that R→ R′ → H = R→ H and diagram (4) commutes. By
the Decomposition Lemma for pushouts, diagram (4) is a pushout. Since epimorphisms
and M-morphisms are closed under pullbacks and pushouts, the vertical morphisms e,
e′, and e∗ are epimorphisms and n, n′, and n∗ are in M. Let ac′ as in the construction.
Then ρ′ = 〈q′, ac′〉 is a rule in Q(p) and, by Lemma 2, G⇒ρ′,n,n∗ H is a direct derivation
with n ∈M.

If M strictly closed under decomposition, there is a transformation from M- to A-
matching.

Theorem 4 (fromM- to A-matching). Let 〈C,M〉 be a weak adhesive HLR category
and M strictly closed under decomposition. There is a transformation R such that, for
every rule ρ,

JρKM = JR(ρ)KA.

The idea of the transformation is to use the application condition inM which is satisfied
iff the match is inM.

Construction. For a rule ρ = 〈q, ac〉, let R(ρ) = 〈q, 〈inML ∧ acL, acR〉〉.

Example 13. The rule q = 〈
1 2

←↩
1 2

↪→
1 2

〉 with left application condition
acL = ¬∃(

1 2
→

1 2
), meaning w.r.t. M-matching “Add an edge between distinct

nodes, provided there does not exist a connecting edge”, is transformed into the rule q

with left application condition inML ∧ acL = ¬∃(
1 2

→
1=2

) ∧ ¬∃(
1 2

→
1 2

)
meaning w.r.t. A-matching “Add an edge between the nodes, provided the nodes are
distinct and there does not exist a connecting edge”.

Proof. Since M is strictly closed under decomposition, the property “the match is in
M” can be expressed by the application condition inM (see the first statement in the
proof of Theorem 2). Then, for every rule ρ, G⇒M,ρ H iff G⇒q H for some q ∈ R(ρ),
i.e. JρKM = JR(ρ)KA.

By Theorems 3 and 4, we obtain the following corollary.

Corollary 2 (equivalence). For weak adhesive HLR categories with pushouts or an
M-initial object, epi-M-factorization, and M strictly closed under decomposition, A-
matching andM-matching are expressively equivalent.

A-matching
R

Q
M-matching

6. Transformations of conditions

In the following, we present transformations from constraints to application conditions,
from right- to left application conditions, and from application conditions to constraints.
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Moreover, we consider the construction of explicit gluing conditions. These basic trans-
formations can be used in the development of correct transformation systems, as we show
in Section 7.

First, we show that a constraint can be transformed into an equivalent right application
condition in the sense that the existence of a comatch is conjunctively incooperated into
the constraint. This transformation is used in Section 7, e.g. in the construction of weakest
preconditions. The construction is a generalized version of the corresponding construction
for basic constraints in (Ehrig et al. 2006b), first described in (Heckel and Wagner 1995).

Theorem 5 (transformation of constraints into application conditions). Let
〈C,M〉 be a weak adhesive HLR category withM-initial object I and epi-M-factorization.
There is a transformation A such that, for all conditions c over I, all rules ρ with right-
hand side R, and all morphisms m∗:R→ H,

m∗ |= A(ρ, c) ⇐⇒ H |= c.

The idea of the transformation A is to consider a disjunction of all possible overlappings
of R and the objects of the condition.

Construction. For conditions c over I and rules ρ, define A(ρ, c) = A1(iR, c), where iR
is the initialM-morphism to R. For morphisms p:P → P ′ inM, conditions over P and
switch k ∈ {1, 2},

P ′

C ′

E

P

C

(1)a′

e

p

a

q

r

b

Ak(p, true) = true,
Ak(p, ∃(a, c′)) = ∨e∈E ∃(b, A2(r, c′)).

For a morphism p:P → P ′ in M, construct the pushout (1) of
p and a leading to morphisms a′:P ′ → C ′ and q:C → C ′. The
disjunction ∨e∈E ranges over all epimorphisms e:C ′ → E such
that both b = e ◦ a′ and r = e ◦ q are in M, if k = 2, and just
r = e ◦ q inM, if k = 1.

For Boolean formulas over conditions, the transformation Ak(p, c) is extended in the
usual way.

Example 14. Given the rule ρ = 〈 ←↩ ↪→ 〉, the graph constraint
c = ∀(∅ → , ∃( → )) meaning “Every node must have a loop” is transformed
into the right application condition A(ρ, c) = ¬∨5

j=1 ∃( → P ′
j , ¬∨` ∃(P ′

j → Ej`)) =
∧5

j=1 ∀( → P ′
j , ∨` ∃(P ′

j → Ej`)) for the graphs P ′
j , Ej` as in Figure 3, meaning

“Every node (outside and inside the occurrence of the right-hand side) must have a
loop”.

Remark. For the initial M-morphisms iR, iP , the construction of A1(iR, ∃iP ) and the
first invocation of A1(iR, ∃(iP , c)) corresponds to the construction of all possible gluings
〈E, b, r〉 of the right-hand side R of the rule and the object P of the condition, such that
the morphism r is inM, as in (Ehrig et al. 2006b).

Before we prove Theorem 6, we state a general property of the transformation Ak(p, c).
The following lemma states that a condition c over P can be shifted over a morphism p
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R

1
C′

1
E′

31
E′

21
E′

1 1
E′

4 1
E′

5

1

∅
(1)a′

e2 e3 e4 e5

iR

iP
q

P ′
1

C′
1

E11

(1)a′1

e11

p1

a

q1

P ′
2

C′
2

E21

(1)a′2

e21

p2

a

q2

P ′
3

C′
3

E31

(1)a′3

e31

p3

a

q3

P ′
4

C′
4

E41

(1)a′4

e41

p4

a

q4

P ′
5

C′
5

E51 E52

(1)a′5

e51 e52

p5

a

q5

Figure 3. Transformation of a graph constraint into an application condition

in M with Dom(p) = P in the sense of a conjunctive combination of c and ∃p, as used
in (Pennemann 2008b) for instance.

Lemma 3 (transformation Ak(p, c)). For all conditions c over P , all morphisms
p:P → P ′ in M and p′′:P ′ → H and either (k = 1 and p M-initial) or (k=2 and
p′′ inM), we have:

p′′ |= Ak(p, c) ⇐⇒ p′′ ◦ p |= c.

P ′

H

P
p

p′′ (p′′ ◦ p)
=

cAk(p, c)

|==|

Proof. By structural induction.
Basis. For c = true, we have c = true = Ak(p, true) = Ak(p, c).
Hypothesis. Assume the statement holds for condition c′.
Step. Let c = ∃(a, c′).

P ′

C ′

E

H

P

C

(1)a′

e

b

q′′

p

a

q

r

q′
h

p′′
p′

Only if. Assume p′′ |=Ak(p,∃(a, c′))=∨e∈E ∃(b, A2(r, c′)).
There is an e ∈ E such that p′′ |= ∃(b, A2(r, c′)). By definition
of |=, there exists a morphism q′′:E → H inM with p′′ = q′′◦b.
Define q′ = q′′ ◦ r. As q′′, r in M and M closed under compo-
sition, q′ inM. Let p′ = p′′ ◦ p. Either p = iR and p′ = iH inM
(k =1) or p, p′′ inM,M closed under composition and p′ inM
(k = 2). By construction a′ ◦p = q ◦a ((1) is pushout), r = e◦ q
and b = e ◦ a′. Together, p′′ ◦ p = p′ = q′ ◦ a (p′ = p′′ ◦ p |= ∃a).
Using the inductive hypothesis, q′′ |= A2(p,∃(a, c′)) implies
q′ = q′′ ◦ r |= c′, we have p′ = p′′ ◦ p |= ∃(a, c′).

If. Assume p′′◦p |= ∃(a, c′). Let p′ = p′′◦p. Either p = iR and p′ = iH inM (k =1) or p′′, p

inM,M closed under composition and p′ inM (k = 2). By definition of |=, there exists
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a morphism q′:C → H in M with p′ = q′ ◦ a. Following the construction, we yield the
pushout (1) with object C ′ together with the morphisms a′ and q. As q′ ◦ a= p′ = p′′ ◦ p,
the pushout guarantees the existence of a unique morphism h:C ′ → H with p′′ =h ◦ a′

and q′ =h◦q. Consider q′′◦e=h, an epi-M-factorization of h with epimorphism e andM-
morphism q′′. Let r = e◦q. As q′′◦r = q′, q′, q′′ inM andM closed under decomposition,
r in M. Define b = e ◦ a′. For k =1, we are ready to conclude. For k = 2, the additional
assumption p′′ in M and p′′, q′′ in M and M closed under decomposition yields the
additional requirement b in M. In every case, p′′ =h ◦ a′, h = q′′ ◦ e and b = e ◦ a′ yield
p′′ = q′′ ◦ b (p′′ |= ∨e∈E ∃b =Ak(p, ∃a)). Using the inductive hypothesis, q′ = q′′ ◦ r |= c′

implies q′′ |= A2(p,∃(a, c′)), we have p′′ |= ∨e∈E ∃(b, A2(r, c′))= Ak(p,∃(a, c′)).
For Boolean formulas over conditions, the statement follows directly from the defini-

tions and the inductive hypothesis. Thus, the statement holds for all conditions over I.

Proof of Theorem 5. According to Lemma 3, for all conditions c over I, all morphisms
iR: I → R in M and m∗:R→ H, we have: m∗ |= A1(iR, c) iff m∗ ◦ iR |= c iff iH |= c iff
H |= c. �

In the modified cases of A-matching and A-satisfiability or M-matching and M-
satisfiability, there are simplified transformations.

Remark (M-matching and M-satisfiability). In the case of M-matching and M-
satisfiability, one may directly use transformation A2(iR, c)such that for all conditions c

over I, all rules ρ = 〈L ←↩ K ↪→ R〉 we have: For all morphisms m∗:R → H in M,
m∗ |= A2(iR, c)⇔ H |= c.

According to Lemma 3, for all conditions c over I, all morphisms iR: I → R inM and
m∗:R→ H inM, we have: m∗ |= A2(iR, c) iff m∗ ◦ iR |= c iff iH |= c iff H |= c.

Remark (A-matching and A-satisfiability). In the case of A-matching and A-satis-
fiability, one may use transformation B of Lemma 2 such that for all conditions c over I,
all rules ρ = 〈L←↩ K ↪→ R〉 we have: For all morphisms m∗:R→ H, m∗ |=A B(iR, c)⇔
H |=A c.

For all conditions c over I, all initial M-morphisms iH , and all factorizations iH =
m∗ ◦ iR of morphism iH , m∗ |=A B(iR, c)⇔ iH |=A c⇔ H |=A c.

With the help of transformation N(e, c) of Lemma 2, we can generalize transformation
Ak(p, c) from morphisms p inM to arbitrary morphisms.

Corollary 3 (shifting of conditions over morphisms). There is a transformation
Shiftk such that, for all conditions c over P and all morphisms p:P → P ′, p′′:P ′ → H,
and either (k=1 and p M-initial) or (k=2 and p′′ inM),

p′′ |= Shiftk(p, c) ⇐⇒ p′′ ◦ p |= c.

Construction. Let p = m ◦ e be a epi-M-factorization of m into an epimorphism e and
morphism m in M. If k=1 and p M-initia, then e = idI , p in M and let Shift1(m, c) =
A1(p, c). If k=2 and p′′ inM, then Shift2(p, c) = A2(m,N(e, c)).
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Proof. For k=2 and p′′ in M, the proof obligation is a direct consequence of the
transformations N and Ak (Lemma 2 and 3): We have p′′ |= Shiftk(p, c) = A2(m,N(e, c))
iff (p′′ ◦m) |= N(e, c) iff (p′′ ◦m)◦e |= c iff (p′′ ◦p) |= c, as (p′′ ◦m) is inM and (p′′ ◦m)◦e
is an epi-M-factorization of (p′′ ◦ p).

Second, there is a transformation from right to left application conditions such that
a comatch satisfies an application condition iff the match satisfies the transformed ap-
plication condition. This transformation is used in Section 7, e.g. in the construction of
weakest preconditions. The construction is a generalized version of the corresponding
construction for basic application conditions in (Ehrig et al. 2006b), first described in
(Heckel and Wagner 1995).

Theorem 6 (transformation of application conditions). Let 〈C,M〉 be a weak
adhesive HLR category with M-initial object. There is a transformation L such that,
for every rule ρ, every right application condition c for ρ, and every direct derivation
G⇒ρ,m,m∗ H,

m |= L(ρ, c) ⇐⇒ m∗ |= c.

The idea of transformation L is to apply ρ and subsequent “derived” rules on the objects
and morphisms of the condition, if possible, while preserving the (logical) structure of
the condition.

Construction. Transformation L(ρ, c) is defined inductively as follows:

L K R

ZY X

l r

l∗ r∗

b a(2) (1)

L(ρ∗, c) c

Let L(ρ, true) = true and L(ρ,∃(a, c′)) = ∃(b, L(ρ∗, c′))
if 〈r, a〉 has a pushout complement (1) and ρ∗ = 〈Y ←↩

Z ↪→ X〉 denotes the “derived” rule by constructing
pushout (2). Note, as r is in M, the pushout com-
plement is unique, if existent. Otherwise, 〈r, a〉 has no
pushout complement and L(ρ, ∃(a, c′)) = false.

For Boolean formulas over application conditions, the transformation L is extended in
the usual way.

Example 15. The right application condition ac = ¬∃( → ) for the rule ρ =
〈 ←↩ ↪→ 〉, meaning “An edge between the nodes in the comatch must not
exist” is transformed into the left application condition L(ρ, ac) = ¬∃( → ),
meaning that two parallel edges between the nodes in the match must not exist.

L K R

ZY X

l r

l∗ r∗

b a(2) (1)

Example 16. The right application condition ac = ¬∃( → ), meaning
“There do not exist two parallel edges between the nodes in the comatch”, is transformed
for the rule ρ = 〈

1
←↩

1
↪→

1
〉 into the left application condition L(ρ, ac) = ¬false ≡
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true, meaning “The rule can always be applied”, because the pair 〈
1
→

1 2
,

1 2
→

1 2
〉 of morphisms has no pushout complement.

Proof. By structural induction. Let G⇒ρ,m,m∗ H be any direct derivation.
Basis. For c = true, we have c = true = L(ρ, true) = L(ρ, c).
Hypothesis. Assume the statement holds for condition c′.
Step. For right application conditions of the form c = ∃(a, c′), we distinguish two cases:
Case 1. The pair 〈r, a〉 has a pushout complement. Then L(ρ,∃(a, c′)) = ∃(b, L(ρ∗, c′))
and we have: (A) Given a morphism q′:Y → G in M with q′ ◦ b = m, there is a
decomposition of the pushouts of the derivation into pushouts (1’)–(4’) as follows: First,
construct (4’) as the pullback diagram of q′ and d2. By the universal property of pullbacks,
there exists a unique morphism K → Z ′ such that the arising diagrams commute. By
the pushout-pullback decomposition, (2’) and (4’) are pushouts. As K → Z ′ is unique, l

is inM, and pushout complements of morphisms inM are unique up to isomorphisms,
pushout (2’) equals pushout (2) from the construction up to isomorphism. Now construct
pushout (1’) of K → Z ′ and r. As K → Z ′ is unique, r is inM, and pushout complements
of morphisms inM are unique up to isomorphisms, pushout (1’) equals pushout (1) from
the construction up to isomorphism. By the universal property of pushouts, there is a
unique morphism q:X → H with q ◦a = m∗. By the Decomposition Lemma of pushouts,
the arising diagram (3’) becomes a pushout. Since q′ is inM, the morphisms z and q are
inM, too.

L K R

Z ′Y X

DG H

l r

b a(2’) (1’)

d2 d1

q′ z q

m m∗

(4) (3)

(B) Given a morphism q:X → H in M with q ◦ a = m∗, the original pushouts can be
decomposed into pushouts (1’)–(4’) similar as above: First (3’) is constructed as pullback.
Eventually a morphism q′:Y → G with q′ ◦ b = m is yielded. Since q is in M, z and q′

are inM.
(C) Given a right application condition c′ and the derived rule ρ∗ = 〈Y ←↩ Z ↪→ X〉 with
morphisms q′:Y → G and q:X → H, by the inductive hypothesis, we have q |= c′ iff
q′ |= L(ρ∗, c′).

By the definitions of L and |= and the statements above, we have

m |= L(ρ,∃(a, c′)) = ∃(b, L(ρ∗, c′))
⇔ ∃q′:Y → G inM. q′ ◦ b = m ∧ q′ |= L(ρ∗, c′)
⇔ ∃q:X → H inM. q ◦ a = m∗ ∧ q |= c′

⇔ m∗ |= ∃(a, c′).

Case 2. The pair 〈r, a〉 has no pushout complement and L(ρ,∃(a, c′)) = false. We have
to show that m |= false ⇔ m∗ |= ∃(a, c′): As no morphism satisfies false, it suffices
to show m∗ 6|= ∃(a, c′). Assume m∗ |= ∃(a, c′), then there exists some q:X → H with
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q ∈ M and q ◦ a = m∗. Thus there is a decomposition of the existing pushout into two
pushouts (1) and (3) as in Case 1 above. Hence the pair 〈r, a〉 has a pushout complement.
Contradiction.

For Boolean formulas over right application conditions, the statement follows directly
from the definition and the inductive hypothesis. Thus, the statement holds for all right
application conditions.

In the case of A-satisfiability, there is a derived transformation from right to left appli-
cation conditions.

Corollary 4 (A-satisfiability). Let 〈C,M〉 be a weak adhesive HLR category with
M-initial object, epi-M-factorization andM strictly closed under decomposition. Then
there is a derived transformation LA with LA(ρ, ac) = Asat(L(ρ,Msat(ac))) for A-
satisfiable conditions ac such that for every derivation G⇒ρ,m,m∗ H,

m |=A LA(ρ, ac) ⇐⇒ m∗ |=A ac.

Proof. The statement follows immediately from Theorems 1, 2, and 6: m |=A LA(ρ, ac)⇔
m |=A Asat(L(ρ,Msat(ac)))⇔ m |= L(ρ,Msat(ac))⇔ m∗ |= Msat(ac)⇔ m∗ |=A ac.

For weak adhesive HLR categories withM-initial object, there are two transformations
of application conditions to constraints, which correspond to the universal and existential
closure of application conditions. In the case of A-matching however, the closures have to
be over all morphisms and do not fit to the notion ofM-satisfiability. Therefore the first
part of the condition has to be transformed accordingly. Intuitively, these transformations
construct weakest preconditions and strongest post conditions of the matching operation
and are used in Section 7, e.g. in the construction of weakest preconditions and strongest
postconditions.

Theorem 7 (transformation of application conditions into constraints). Let
〈C,M〉 be a weak adhesive HLR category with M-initial object. There are transforma-
tions C∀ and C∃ such that, for every application condition ac over L and for all objects G,

G |= C∀(ac) ⇔ ∀m:L→ G. m |= ac, and
G |= C∃(ac) ⇔ ∃m:L→ G. m |= ac.

The idea of the transformations is to consider junctions ofM-satisfiable conditions, one
condition for each possible level of identification.

Construction. For an application condition ac over L, let

C∀(ac) = ∧e∈E ∀(iL′ , N(e, ac))
C∃(ac) = ∨e∈E ∃(iL′ , N(e, ac))

where the set E ranges over all epimorphisms e starting from L, and, for an epimorphism
e:L→ L′, iL′ is the initialM-morphism to L′, and the transformation N(e, ) is defined
as in the construction of Lemma 2. For Boolean formulas over application conditions,
the transformations C∀ and C∃ are extended in the usual way.

Proof. By Lemma 2, for all application conditions ac over L, and all morphisms m
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with domain L with epi-M-factorization m = m′ ◦ e, m′ |= N(e, ac)⇔ m |= ac. Together
with the definition of |=, ∧, and C∀, we have

∀m:L→ G. m |= ac
⇔ ∀e:L→ L′ in E . ∀m′:L′ → G inM. m′ |= N(e, ac)
⇔ ∀e:L→ L′ in E . iG |= ∀(iL′ , N(e, ac))
⇔ ∀e:L→ L′ in E . G |= ∀(iL′ , N(e, ac))
⇔ G |= ∧e∈E ∀(iL′ , N(e, ac))
⇔ G |= C∀(ac).

The statement for C∃ follows from the relationship C∃(ac) ≡ ¬C∀(¬ac).

Example 17. The application condition ac = ∃(
1
→

1
) meaning “For the image

of node 1, there exists some proper outgoing edge” is transformed into the constraints

C∀(ac) = ∀(∅ → , N(id, ac)) = ∀(∅ → , ac) = ∀(∅ →
1
, ∃(

1
→

1
)

C∃(ac) = ∃(∅ → , N(id, ac)) = ∃(∅ → , ac) = ∃(∅ →
1
, ∃(

1
→

1
)

meaning “For every node, there exists some proper outgoing edge” and “There exist a
node with some proper outgoing edge”, respectively.

Example 18. The application condition ac = ∃( → ) meaning “The two nodes
have to be identified” is transformed into the constraints

C∀(ac) = ∧e∈E ∀(e ◦ iL, N(e, ac)) = ∀(id ◦ iL, N(id, ac)) ∧ ∀(f ◦ iL, N(f, ac))
= ∀(∅ → , ∃( → )) ∧ ∀(∅ → , ∃( → ))
≡ ∀(∅ → , false) ∧ ∀(∅ → , true)
≡ ¬∃(∅ → )

C∃(ac) = ∨e∈E ∃(e ◦ iL, N(e, ac)) = ∃(id ◦ iL, N(id, ac)) ∨ ∃(f ◦ iL, N(f, ac))
= ∃(∅ → , ∃( → )) ∨ ∃(∅ → , ∃( → ))
≡ ∃(∅ → , false) ∨ ∃(∅ → , true)
≡ ∃(∅ → )

where iL: ∅ → and f : → , meaning “There exists at most one node” and
“There exists a node”, respectively.

If the matching and satisfiability notions correspond, i.e. in the case ofM-matching and
M-satisfiability and in the case of A-matching and A-satisfiability, C∀ and C∃ reduce to
the universal and existential closure, respectively.

Remark. For M-matching and M-satisfiability and in the case of A-matching and A-
satisfiability, one may simply define C∀(ac) = ∀(iL, ac) and C∃(ac) = ∃(iL, ac) using
the universal and existential closure. In the first case, for every application condition ac
over L and for all objects G,

G |= ∀(iL, ac) ⇔ ∀m:L→ G ∈M. m |= ac,
G |= ∃(iL, ac) ⇔ ∃m:L→ G ∈M. m |= ac.

By definition of |=, we have: G |= ∀(iL, ac) iff iG |= ∀(iL, ac) iff ∀m:L→ G ∈M. m |= ac.
The second case is analogous.
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The applicability of a rule can be expressed by a left application condition on the match-
ing morphism. We use this result in the construction of weakest preconditions in Section 7.

Theorem 8 (applicability of a rule). Let 〈C,M〉 be a weak adhesive HLR category
with M strictly closed under decomposition. There is a transformation Def from rules
to application conditions such that, for every rule ρ and every morphism m:L→ G,

m |= Def(ρ)⇔ ∃H. G⇒ρ,m,m∗ H.

In the graph case, the idea of the following construction is to express the gluing condition
(Ehrig 1979) of a rule by a conjunction of negative application conditions.

Construction. For a rule ρ = 〈q, ac〉, let Def(ρ) = Appl(q) ∧ acL ∧ L(ρ, acR), where,

for a rule q = 〈L l←↩K
r

↪→R〉, Appl(q) = ∧a∈A¬∃a and the index set A ranges over all
morphisms a:L→ L′ such that the pair 〈l, a〉 has no pushout complement and there is no
decomposition a = a′′ ◦ a′ of morphism a such that a′′ in M is not an isomorphism and
〈l, a′〉 has no pushout complement. The non-existence of such a decomposition ensures
that we only consider minimal morphisms a:L→ L′. The morphism a′′ is required to be
non-isomorphic, otherwise there always is such a decomposition and A would be empty.
The requirement a′′ inM is necessary in context of anM-satisfiable condition.

Remark. For the category 〈Graphs, Inj 〉, a morphism m satisfies the application con-
dition Appl(ρ) iff m satisfies the contact and identification condition (Ehrig 1979). Note
that the graph condition Appl(ρ) is finite, i.e. a finite conjunction of conditions (up to
isomorphism).

Example 19. For DeleteNode = 〈 ←↩ ∅ ↪→ ∅〉, the application of DeleteNode requires
the absence of additional edges adjacent to the deleted node:

Appl(DeleteNode) = ¬∃(
1
→

1 2
) ∧ ¬∃(

1
→

1 2
) ∧ ¬∃(

1
→

1
)

Proof. For plain rules q, we show that, for every morphism m:L→ G,

m |= Appl(q)⇔ ∃H.G⇒q,m,m∗ H.

Only if. Assume there is no direct derivation G ⇒q,m,m∗ H, i.e. the pair 〈l,m〉 has no
pushout complement. Let be a = m and m′ = idG. Now, you have some morphism a with
m = m′ ◦ a for some morphism m′ in M such that 〈l, a〉 has no pushout complement.
If there is a decomposition a = a′′ ◦ a′ of a such that 〈l, a′〉 has no pushout complement
and a′′ inM is not an isomorphism, let be a = a′, m′ = m′ ◦a′′, m′ inM and repeat the
argument. Otherwise there is a no such decomposition and a belongs to the construction.
As m = m′ ◦ a and m′ inM, m |= ∃a and m 6|= Appl(q).
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If. Let G ⇒q,m,m∗ H, i.e. the pair 〈l, m〉 has a pushout comple-
ment. Assume, there is a ∈ A such that m |= ∃a, i.e. there is a
morphism m′ inM such that m = m′◦a. Construct (2) as pullback
of L′ → G ← D. By the universal property of pullbacks, there is
a morphism K → K ′ such that the resulting diagrams commute.
By the pushout-pullback decomposition, the pushout (1)+(2) has
a decomposition into two pushouts (1) and (2) and, in particular,
〈l, a〉 has a pushout complement, contradiction. Consequently, for
every morphism a ∈ A, m |= ¬∃a and m |= Appl(q).

L K

L′ K ′

G D

a

m

l

m′

(1)

(2)

By the definition of Def and |=, Theorem 8, the statement above, and the definition of⇒,
for every morphism m:L→ G, m |= Def(ρ) iff m |= Appl(q)∧m |= acL ∧m |= L(ρ, acR)
iff ∃H.G ⇒q,m,m∗ H ∧m |= acL ∧m∗ |= acR iff ∃H.G ⇒ρ,m,m∗ H. This completes the
proof.

7. Correctness of transformation systems

In this section we consider the correctness of transformation systems by integration of
constraints into application conditions, and alternatively, by verification.

Our first result is that, given a specification in form of a constraint, any transformation
rule can be “corrected” in the sense of preventing rule applications leading to objects not
satisfying the constraint. More precisely, the transformations of Section 6 can be used
to integrate constraints into left application conditions of a rule such that every direct
derivation is constraint-guaranteeing or constraint-preserving.

Definition 9 (guarantee and preservation of constraints). Given a constraint c,
a rule ρ is c-guaranteeing if for every direct derivation G ⇒ρ H, H |= c. A rule ρ is
c-preserving if for every direct derivation G⇒ρ H, G |= c implies H |= c.

By Theorems 5 and 6, we obtain the following result. For a rule ρ, let JρKA denote the
sets of pairs 〈G, H〉 with direct derivation G⇒ρ,m,m∗ H.

Corollary 5 (guarantee and preservation of constraints). Let 〈C,M〉 be a weak
adhesive HLR category withM-initial object and epi-M-factorization. There are trans-
formations Gua, Pres from rules and conditions to rules such that for every transforma-
tion rule ρ, and every constraint c,

JGua(ρ, c)KA ⊆ JρKA and Gua(ρ, c) is c-guaranteeing, and
JPres(ρ, c)KA ⊆ JρKA and Pres(ρ, c) is c-preserving.

Construction. For a rule ρ = 〈〈L ←↩ K ↪→ R〉, 〈acL, acR〉〉, let Gua(ρ, c) = 〈q, 〈acL ∧
acgua, acR〉〉 with acgua = L(ρ,A(ρ, c)) and let Pres(ρ, c) = 〈q, 〈acL ∧ acpres, acR〉〉 with
acpres = (A(ρ−1, c)⇒ acgua), where ρ−1 denotes the inverse rule 〈〈R←↩ K ↪→ L〉, 〈acR, acL〉〉
of ρ.

Proof. Clearly, JGua(ρ, c)KA ⊆ JρKA and JPres(ρ, c)KA ⊆ JρKA. Using Theorems 5
and 6, we show that Gua(ρ, c) is c-guaranteeing by showing that acgua guarantees the
satisfiability of c: For every direct derivation G ⇒Gua(ρ,c) H, H |= c iff m∗ |= A(ρ, c) iff
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m |= L(ρ,A(ρ, c)) iff m |= acgua. Finally, we show that Pres(ρ, c) is c-preserving by show-
ing that acpres preserves the satisfiability of c: For every direct derivation G⇒Pres(ρ,c) H,
(G |= c implies H |= c) iff (m |= A(ρ−1, c) implies m |= acgua) iff m |= (A(ρ−1, c) ⇒
acgua) iff m |= acpres.

The transformations Gua and Pres enforce correctness by restricting the applicability
of transformation rules. In this way, a transformation system can be transformed into a
constraint-guaranteeing or constraint-preserving system. Alternatively, one may use the
transformations of Section 6 to verify the correctness of transformation systems with
respect to given pre- and postconditions. A standard method is to construct a weakest
precondition and to show that the precondition implies the weakest precondition.

In the following, we show how to construct weakest preconditions and strongest post-
conditions for transformation rules.

Definition 10 (weakest preconditions). A condition c is a precondition of a rule ρ

relative to a condition d, if for all objects G with G |= c, G ⇒ρ H implies H |= d for
all H, and G⇒ρ H for some H. A precondition c is a weakest precondition of ρ relative
to d, denoted by wp(ρ, d), if any precondition of ρ relative to d implies c. Analogously,
a condition c is a liberal precondition, if for all objects G |= c at least G ⇒ρ H implies
H |= d for all H and a weakest liberal precondition, denoted by wlp(ρ, d), if any liberal
precondition of ρ relative to d implies c.

The following characterization points out a simple proof scheme for weakest liberal pre-
conditions.

Fact 8 (characterization wlp). A condition c is a weakest liberal precondition of ρ

relative to d if, for all objects G, (G |= c) iff (G⇒ρ H implies H |= d for all H).

Proof. Assume, for all objects G, (G |= c) iff (G ⇒ρ H implies H |= d for all H). By
Definition 10, c is a liberal precondition of ρ relative to d. It remains to show for any
other liberal precondition c′ of ρ relative to d, c′ implies c. Let G be an arbitrary object
and assume (G |= c′). According to Definition 10, we have (G ⇒ρ H implies H |= d

for all H). Using the assumption, we have G |= c. As c′ implies c, c is a weakest liberal
precondition.

For the construction of weakest preconditions, the following observation is essential:

Fact 9 (existence of results). G |= ¬wlp(ρ, false) ⇔ G⇒ρ H for some H.

Proof. There is an object H such that G ⇒ρ H, iff there is an object H such that
G⇒ρ H and H |= true, iff not for all objects H we have not (G⇒ρ H and H |= true),
iff not for all objects H we have not G ⇒ρ H or H 6|= true, iff not for all objects H we
have G⇒ρ H implies H |= false.

Theorem 9 (weakest preconditions). Let 〈C,M〉 be a weak adhesive HLR category
with M-initial object, epi-M-factorization and M strictly closed under decomposition.
There are transformations Wlp and Wp such that for every rule ρ and every condition d,
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Wlp(ρ, d) is a weakest liberal precondition and Wp(ρ, d) is a weakest precondition of ρ

relative to d.

Construction. For a rule ρ and condition d, let Wlp(ρ, d) = C∀(Def(ρ)⇒ L(ρ,A(ρ, d))),
and Wp(ρ, d) = Wlp(ρ, d) ∧ ¬Wlp(ρ, false).

Proof. We show Wlp(ρ, d) ≡ wlp(ρ, d) for arbitrary rules ρ and conditions d: For all
objects G, we have:

G |= Wlp(ρ, d)
⇔ G |= C∀(Def(ρ)⇒ L(ρ,A(ρ, d))) (Def. Wlp)
⇔ ∀L m→G. m |= (Def(ρ)⇒ L(ρ,A(ρ, d))) (Thm. 7)
⇔ ∀L m→G. m |= Def(ρ)⇒ m |= L(ρ,A(ρ, d)) (Def. |=)

⇔ ∀L m→G, R
m∗

→H. m |= Def(ρ)⇒ m∗ |= A(ρ, d) (Thm. 6)

⇔ ∀L m→G, R
m∗

→H. (G⇒ρ,m,m∗ H)⇒ H |= d (Thms. 8 & 5)
⇔ G |= wlp(ρ, d). (Def. wlp, Fact 8)

Consequently, Wlp(ρ, d) is a weakest liberal precondition of ρ relative to d. By Fact 9,
Wp is a weakest precondition of ρ relative to d.

Example 20 (GSM weakest preconditions). Consider the GSM condition consis-

tency in Example 4 and the GSM transformation system in Example 7. Weakest pre-
conditions can be used to answer the question, whether or not the GSM transformation
system is correct with respect to the pre- and postcondition consistency. We focus on
the rule Handover and the subcondition c3 of consistency.

The application of the transformation A to the rule Handover and the constraint c3

yields a right application condition, i.e. a condition over the right-hand side of Handover:

A(Handover, c3)

= ∀

 BSCBSC
cpl , ∃

 BSCBSC
cpl

BSC
 ∨ ∃

 BSCBSC
cpl

 ∨ ∃
 BSCBSC

cpl




The application of the transformation L to the rule Handover and the right application
condition A(Handover, c3) yields a left application condition, i.e. a condition over the
left-hand side of Handover:

L(Handover, A(Handover, c3))

= ∀

 BSCBSC
cmd , ∃

 BSCBSC
cmd

BSC
 ∨ ∃

 BSCBSC
cmd

 ∨ ∃
 BSCBSC

cmd




The application of the transformation Appl to the rule Handover yields the left appli-
cation condition Appl(Handover) = true because only injective matches are considered
and the rule Handover is “node-preserving”, thus, for every match, there exists a pushout
complement.

Finally, the application of the transformation Wlp to the rule Handover and the con-
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dition c3 yields the following constraint over the empty graph:

Wlp(Handover, c3)
=C∀(Def(Handover)⇒ L(Handover,A(Handover, c3)))
=C∀((Appl(Handover) ∧ true ∧ true)⇒ L(Handover,A(Handover, c3)))
≡C∀(true⇒ L(Handover,A(Handover, c3)))
≡C∀(L(Handover,A(Handover, c3)))

=∀

 BSCBSC
cmd , L(Handover,A(Handover, c3))


≡ ∀

 BSCBSC
cmd , ∃

 BSCBSC
cmd

BSC
 ∨ ∃

 BSCBSC
cmd

 ∨ ∃
 BSCBSC

cmd




meaning “Every mobile station record outside the scope of the rule Handover has to
be associated with a base transceiver station (outside or inside the occurrence of the
left-hand side)”. Obviously, the constraint c3 implies Wlp(Handover, c3).

The rule Handover is correct with respect to the pre- and postcondition consistency,
provided that the graph condition consistency implies Wlp(Handover, consistency). The
GSM transformation system is correct, provided that all rules are correct.

Complementary to weakest liberal preconditions, one may consider strongest postcon-
ditions, i.e. the strongest condition one can assume to hold in every state after the
application of a rule onto an object satisfying a given condition.

Definition 11 (strongest postconditions). A condition c is a strongest postcondition
of a rule ρ relative to a condition d, denoted by sp(ρ, d), if for all objects H, H satisfies c

iff there is some object G such that G⇒ρ H and G |= d.

As a rule is applicable to G if and only if the inverse rule is applicable to H, we have
the following relationship between weakest liberal preconditions and strongest postcon-
ditions:

Fact 10 (relationship of sp and wlp). sp(ρ, d) ≡ ¬wlp(ρ−1,¬d).

Proof. This relationship may be seen as follows:

H |= ¬wlp(ρ−1,¬d)
⇔ ¬∀G. (H ⇒ρ−1 G)⇒ G |= ¬d (Def. wlp)
⇔ ¬∀G. (G⇒ρ H)⇒ G |= ¬d (Def. ρ−1)
⇔ ∃G. (G⇒ρ H) ∧G |= d (Def. ∀,⇒,∨)
⇔ H |= sp(ρ, d) (Def. sp)

Consequently, the mentioned relationship of sp and wlp holds.

As an immediate consequence of Fact 10, we can express the construction of Sp in terms
of basic transformations.
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Corollary 6 (strongest postconditions). Let 〈C,M〉 be a weak adhesive HLR cat-
egory withM-initial object, epi-M-factorization andM strictly closed under decompo-
sition. There is a transformation Sp such that for every rule ρ and every condition d,
Sp(ρ, d) is a strongest postcondition of ρ relative to d.

Construction. For arbitrary rules ρ and conditions d, we have

Sp(ρ, d) = C∃(Def(ρ−1) ∧ L(ρ−1,A(ρ−1, d))).

Proof. Let ρ be an arbitrary rule and d be an arbitrary condition.

Sp(ρ, d)
≡ C∃(Def(ρ−1) ∧ L(ρ−1,A(ρ−1, d))) (Def. Sp)
≡ ¬C∀(Def(ρ−1)⇒ ¬L(ρ−1,A(ρ−1, d))) (Def. C∃,C∀,⇒,∨)
≡ ¬C∀(Def(ρ−1)⇒ L(ρ−1,A(ρ−1,¬d))) (Def. A,L)
≡ ¬Wlp(ρ−1,¬d) (Def.,Correct. Wlp)
≡ sp(ρ, d) (Fact 10)

Consequently, Sp is a strongest postcondition of ρ relative to d.

The implication problem of conditions, seen as a tautology or satisfiability problem,
is covered in (Orejas et al. 2008; Orejas 2008; Pennemann 2008a; Pennemann 2008b),
although the first two papers consider conditions as in (Ehrig et al. 2006b). Alternatively,
in the next section, we consider a translation of graph conditions into first-order graph
formulas, making it possible to apply existing first-order theorem provers and satisfiability
solvers.

8. Expressiveness of graph conditions

We are interested in classifying nested conditions, i.e. we want to classify the kind of
graph properties that can be expressed by graph conditions, and we want to know if it is
decidable, whether or not a graph condition is satisfiable at all (satisfiability problem),
or whether or not a graph condition is always valid (tautology problem). To this effect,
we compare graph conditions and first-order formulas on graphs (Courcelle 1990; Cour-
celle 1997) and show that the concepts are expressively equivalent. More precisely, we
show that there are transformations from A-satisfiable graph conditions into equivalent
graph formulas and vice versa, similar to (Rensink 2004). However, we consider graphs
with parallel edges, i.e. multiple, distinguishable edges which may have the same label.
Together with the transformations betweenM- and A-satisfiability, we yield the wanted
result. As an additional result, the transformations enable the use of existing first-order
tools to tackle the tautology and satisfiability problem of graph conditions.

For simplicity, we consider graphs with a common labeling function for nodes and
edges, while maintaining the disjointness of the node and edge alphabet. Note that all
considerations can be done for graphs with separate labeling functions, as well. The
definition of first-order graph formulas is similar to (Courcelle 1990; Courcelle 1997):
we allow quantification over nodes and edges, consider a tertiary incidence relation and
introduce a unary predicate for each label. For a fixed label alphabet C = 〈CV,CE〉 with
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CV ∩CE = ∅, the induced signature Σ = (∅, {labb | b ∈ C} ∪ {inc,=}) contains a unary
predicate symbol labb for every label b, a tertiary predicate symbol inc and a binary
predicate symbol =.

Definition 12 (first-order graph formulas). Let Var be an infinite, countable set
of variables. The set of all (first-order graph) formulas over Σ is inductively defined:
For b ∈ C and x, y, z ∈ Var, labb(x), inc(x, y, z) and x = y are formulas over Σ. For
formulas F , Fj (j ∈ J) over Σ and x ∈ Var, true, ¬F , ∧j∈J Fj , and ∃x F are formulas
over Σ. Additionally, false abbreviates ¬true, ∨j∈J Fj abbreviates ¬∧j∈J ¬Fj , F ⇒ G

abbreviates ¬F ∨ G, ∀x F abbreviates ¬∃x ¬F , edge(x) abbreviates ∃y ∃z inc(x, y, z),
and node(x) abbreviates ¬edge(x). For a formula F , Free(F ) denotes the set of all free
variables of F . A formula is closed, if Free(F ) = ∅, i.e. if F does not contain free variables.

The semantics of graph formulas are given in terms of a domain of values and an
interpretation of the (non-logical) symbols of Σ.

Definition 13 (semantics of graph formulas). For a non-empty graph G, let (DG, IG)
be the induced Σ-structure consisting of a non-empty domain DG = VG + EG and
the interpretation IG of the predicate symbols with IG(labb)(d) = true iff lG(d) = b,
IG(inc)(e, u, v) = true iff e ∈ EG, sG(e) = u and tG(e) = v, and IG(=)(d, d′) = true iff
d = d′. The semantic GJF K(σ) of a formula F over Σ in the graph G under the assignment
σ: Var→ DG is inductively defined by:

GJp(x1, . . . , xn)K(σ) = IG(p)(σ(x1), . . . , σ(xn)) for an n-ary predicate p.
GJ∃x F K(σ) = true iff there exists d ∈ DG such that GJF K(σ{x/d}) = true, where

σ{x/d} is the modified assignment with σ{x/d}(x) = d and σ{x/d}(y) = σ(y) other-
wise.

The semantics is extended to the operators true,¬ and ∧ in the usual way.

A graph G satisfies a formula F , denoted by G |= F , iff for all assignments σ: Var→ DG,
GJF K(σ) = true.

Example 21. The first-order graph formula

F = node(u) ∧ lab0(u)⇒ ∃v∃e node(v) ∧ lab1(v) ∧ inc(e, u, v) ∧ laba(e).

has the meaning “Whenever there is a node with label 0, then there exists an edge with
label a from this node to a node with label 1”.

For automated theorem proving, one requires an exact axiomatization of the above struc-
tures to restrict considerations to directed, totally labeled graphs, see (Courcelle 1997)
for unlabeled graphs.

Fact 11 (axiomatization). For an alphabet C = 〈CV,CE〉 with CV ∩CE = ∅, the class
of structures (DG, IG) over Σ are exactly those which satisfy the following properties:

(1) ∀e ∀x ∀y (inc(e, x, y)⇒ ¬∃u ∃v (inc(x, u, v) ∨ inc(y, u, v)))
(2) ∀e ∀x ∀y ∀x′ ∀y′ ((inc(e, x, y) ∧ inc(e, x′, y′))⇒ (x=x′ ∧ y = y′))
(3) ∀x ∧b,d∈CV,b 6=d ¬(labb(x) ∧ labd(x)) and ∀x ∧b,d∈CE,b 6=d ¬(labb(x) ∧ labd(x))
(4) ∀x node(x)⇔ ∨b∈CV labb(x) and ∀x edge(x)⇔ ∨b∈CE labb(x)
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The meaning of the axioms is: (1) (target and source) nodes cannot be edges, (2) an
edge has at most one source and one target, (3) an element has at most one label, and
(4) every node has a node label, every edge has an edge label. Every other statement is
implicit, such as “An edge has source and target nodes” (otherwise, it is not an edge).

There is a transformation from first-order graph formulas into graph conditions.

Theorem 10 (from formulas to conditions). There is a transformation Cond from
first-order graph formulas to graph conditions, such that, for all first-order formulas F

over Σ and all graphs G,

G |= F ⇐⇒ G |=A Cond(F ).

Before we give a construction of the transformation Cond, let us make some preliminary
considerations. We consider formulas on directed, labeled graphs with multiple parallel
edges. Hence edges are handled as individuals. If F is a rectified formula, i.e. distinct
quantifiers bind occurrences of distinct variables, the variables of F can be represented
by isolated nodes and edges in the graphs of a constructed condition. Let X be such a
graph. If the set D′

X = IsoX + EX of all isolated nodes and all edges in X is a subset of
the set Var of variables, then every graph morphism m:X → G into a non-empty graph
G induces an assignment σ: Var → DG such that m = σ[D′

X ], i.e. m(x) = σ(x) for each
x ∈ D′

X . Vice versa, an assignment σ: Var→ DG induces a mapping D′
X → DG that may

be extended to a graph morphism m:X → G with m = σ[D′
X ].

XDXD′
X

Var

Free(F )

DG G

⊆
m

σ

⊆
⊇

=

The key idea of the transformation Cond is to represent existential quantification in a
formula by disjunction over all possible choices, i.e. nodes or edges with all their possible
labels. Some of these branches may later become unsatisfiable, depending on occurring
lab predicates.

Construction. Assume that F is a closed and rectified formula over Σ. Otherwise,
consider the universal closure of F and rename the variables. The graph condition is
given by Cond(F ) = Cond(∅, F ), where ∅ denotes the empty graph. For a formula F

over Σ and a graph X with Free(F ) ⊆ D′
X ⊆ Var, the graph condition Cond(X, F ) is

constructed as follows:

Cond(X, labb(x)) = true if lX(x) = b; false otherwise.
Cond(X, inc(x, y, z)) = ∃(X → X[sX(x) = y]) ∧ ∃(X → X[tX(x) = z]) if x ∈ EX and

y, z ∈ VX ; false otherwise.
A graph X[x= y] is obtained from X by identifying the elements x and y.

Cond(X, x= y) = ∃(X → X[x= y]) iff x and y are identifiable, i.e. (x, y ∈ VX or x, y ∈
EX , sX(x) = sX(y), tX(x) = tX(y)) and lX(x) = lX(y); false otherwise.

Cond(X, ∃x F ) = ∨b∈CV ∃(X → Y, Cond(Y, F )) ∨ ∨b∈CE,d,d′∈CV ∃(X → Z, Cond(Z,F ))
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where Y = X+ b
x
is obtained from X by adding a node x with label b and Z =

X+ d
b
x d′ by adding an edge x with label b together with a d-labeled source and a

d′-labeled target.
Cond(X, F ) is extended to Boolean formulas with the operators true, ¬, ∧ as usual.

Example 22. Let CV = {0, 1} and CE = {a, b}. The first-order graph formula F =
∃x laba(x) with the meaning “There exists an item with label a” is transformed into the
graph condition

Cond(∃x laba(x)) = Cond(∅,∃x laba(x))

= ∨m∈CV∃(∅ → m
x
, Cond( m

x
, laba(x)))

∨ ∨k,n∈CV,m∈CE∃(∅ → k
m
x n , Cond( k

m
x n , laba(x)))

= ∃(∅ → 0 , false) ∨ ∃(∅ → 1 , false)
∨ ∨k,n∈CV (∃(∅ → k

a
x n , true) ∨ ∃(∅ → k

b
x n , false))

≡ ∨k,n∈CV ∃(∅ → k
a
x n ),

with the meaning “There exists an edge with label a and arbitrarily labeled source and
target”. This example shows that, in case of totally labeled graphs, unspecifiedness is
represented by disjunction over all possibilities, which may, at least temporarily, lead to
rather large conditions. A remedy could be the consideration of conditions over partial
and/or partially labeled graphs.

The proof of Theorem 10 depends on the following lemma.

Lemma 4. For all rectified formulas F over Σ, all graphs G, and all graphs X with
Free(F ) ⊆ D′

X ⊆ Var we have: For all morphisms m:X → G and all assignments
σ: Var→ DG with m = σ[D′

X ], GJF K(σ) = true iff m |=A Cond(X, F ).

Proof. By structural induction.
Basis. For F = true, the statement is straightforward. For atomic formulas, the state-
ment follows directly from the definitions:

(1) GJlabb(x)K(σ) = true
⇔ lG(σ(x))= b (Definition of JK)
⇔ lG(m(x))= b (m = σ[D′

X ], ∗)
⇔ m |=A true and lX(x) = b (m label-preserving)
⇔ m |=A Cond(X, labb(x)) (Definition of Cond)

∗ x ∈ Free(labb(x)) ⊆ D′
X

(2) GJinc(x, y, z)K(σ) = true
⇔ σ(x) ∈ EG, sG(σ(x))= σ(y) and tG(σ(x))= σ(z) (Definition of JK)
⇔ m(x) ∈ EG, sG(m(x))= m(y) and tG(m(x))= m(z) (m = σ[D′

X ], ∗)
⇔ x ∈ EX , y, z ∈ VX , m(sX(x))= m(y) and m(tX(x))= m(z) (m is a morphism)
⇔ m |=A ∃(X → X[sX(x) = y]) ∧ ∃(X → X[tX(x) = y])

and x ∈ EX , y, z ∈ VX (Definition of |=A)
⇔ m |=A Cond(X, inc(x, y, z)) (Definition of Cond)

∗ x, y, z ∈ Free(inc(x, y, z)) ⊆ D′
X
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(3) GJx= yK(σ) = true
⇔ (σ(x), σ(y) ∈ VG or σ(x), σ(y) ∈ EG) and σ(x) =σ(y) (Definition of JK)
⇔ m(x) =m(y) (m =σ[D′

X ], ∗)
⇔ m |=A ∃(X → X[x= y]) and x, y are identifiable (Definition of |=A)
⇔ m |=A Cond(X, x= y) (Definition of Cond)

∗ x, y ∈ Free(x= y) ⊆ D′
X , m is a morphism

Hypothesis. Assume, the statement holds for rectified formulas F and Fj (j ∈J).
Step. For formulas of the form ∃x F , the proof uses the inductive hypothesis:

(4) GJ∃x F K(σ) = true
⇔ ∃o ∈ DG. GJF K(σ{x/o}) = true (Def. JK)
⇔ ∃o ∈ VG. ∃b ∈ CV. lG(o) = b and GJF K(σ{x/o}) = true or
∃o ∈ EG. ∃b ∈ CE. lG(o) = b and GJF K(σ{x/o}) = true (Assignment)

⇔ ∃b ∈ CV. ∃m′. m = m′ ◦X → Y and m′ |=A Cond(Y, F ) or
∃b ∈ CE. ∃d, d′ ∈ CV. ∃m′. m = m′ ◦X → Z, m′ |=A Cond(Z,F ) (Hypothesis, ∗)

⇔ ∃b ∈ CV. m |=A ∃(X → Y, Cond(Y, F )) or
∃b ∈ CE. ∃d, d′ ∈ CV. m |=A ∃(X → Z, Cond(Z,F )) (Def. |=A)

⇔ m |=A Cond(X, ∃x F ) (Def. Cond)
∗ m′ = σ{x/o}[D′

X ]

where Y = X+ b
x
is obtained from X by adding a node x with label b and Z =

X+ d
b
x d′ by adding an edge x with label b together with d-labeled source and d′-

labeled target nodes. The rectifiedness of F guarantees that x does not already exists. For
formulas built with the operators ¬ and ∧, the proof of the statement is straightforward
and uses the inductive hypothesis. This completes the inductive proof.

Proof of Theorem 10. For all closed, rectified formulas F over Σ and all graphs G, we have
the following: G |= F iff for all assignments σ: Var → DG, GJF K(σ) = true (Definition
|=) iff for all morphisms iG: ∅ → G, iG |=A Cond(∅, F ) (Lemma 4, for Free(F ) = ∅ = D′

X

and X = ∅) iff G |=A Cond(∅, F ) (Definition |=A). �

Vice versa, there is a transformation from graph conditions into first-order graph for-
mulas.

Theorem 11 (from conditions to formulas). There exists a transformation Form
from graph conditions to first-order graph formulas, such that, for all graph conditions c

over the empty graph ∅ and all graphs G,

G |=A c ⇐⇒ G |= Form(c).

For the construction of the transformation Form, we consider morphisms and conditions
in a certain normal form, such that the identities of the nodes and edges in a condition
can be associated with variables, i.e., no unnecessary identity changes of elements take
place within a condition. A morphism a:P → C is said to be identity-preserving, if y ∈ C

implies (y = a(y) or (y 6∈ a(P ) and y 6∈ P )), elementwise for nodes and edges. This is
no restriction, as every condition may be transformed into an equivalent condition, by
subsequently replacing all morphisms not in this form by morphisms with this property.
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Fact 12. Every identity-preserving graph morphism a with domain P is either the iden-
tity id:P → P or can be decomposed into morphisms that, starting from P , subsequently
add nodes, add edges, identify nodes, and identify edges. There may be multiple decom-
positions for a given morphism.

The key idea of the transformation Form is to decompose the condition ∃(a, c′) into a
nested condition ∃(a1, . . . ,∃(an,∃(id, c′)) ), such that in each morphism aj , 1 ≤ j ≤ n,
one element is added or two elements are identified.

Construction. For conditions based on identity-preserving graph morphisms, Form is
defined as follows:

Form(true) = true
Form(∃(id, c′)) = Form(c′)
Form(∃([vb]a, c′)) = ∃v (node(v) ∧ labb(v) ∧ Form(∃(a, c′)))
Form(∃([euvb]a, c′)) = ∃e (inc(e, u, v) ∧ labb(e) ∧ Form(∃(a, c′)))
Form(∃([u = v]a, c′)) = (u = v ∧ Form(∃(a, c′)))
Form(∃([e= e′]a, c′)) = (e= e′ ∧ Form(∃(a, c′)))

where the morphisms [vb]a, [euvb]a, [u = v]a, [e= e′]a can be decomposed into some
morphism a:P → C after [vb]P → P (addition of a node labeled b), [euvb]P → P

(addition of an edge labeled b to some nodes u and v), [u = v]P → P (identification of
nodes), [e= e′]P → P (identification of edges), respectively. Form is extended for the
operators ¬,∧ as usual. Note, Form is not unique, but well defined.

Remark. For every graph condition c over P , Free(Form(c)) ⊆ DP ⊆ Var, i.e. all free
variables of the constructed formula Form(c) correspond to elements in P .

Example 23. Let CV = {0, 1} and CE = {b, d}. The graph condition

∀(∅ → 0
u
, ∃( 0

u
→ 0

u

b
e 1

v
))

with the meaning “For every node with label 0, there exists an outgoing b-labeled edge
to a node with label 1” is transformed into the following first-order formula:

Form(¬∃(∅ → 0
u
, ¬∃( 0

u
→ 0

u

b
e 1

v
)))

= ¬Form(∃(∅ → 0
u
, ¬∃( 0

u
→ 0

u

b
e 1

v
)))

= ¬∃u (node(u) ∧ lab0(u) ∧ Form(∃( 0
u
→ 0

u
, ¬∃( 0

u
→ 0

u

b
e 1

v
))))

= ¬∃u (node(u) ∧ lab0(u) ∧ Form(¬∃( 0
u
→ 0

u

b
e 1

v
)))

= ¬∃u (node(u) ∧ lab0(u) ∧ ¬Form(∃( 0
u
→ 0

u

b
e 1

v
)))

= ¬∃u (node(u) ∧ lab0(u) ∧ ¬∃v (node(v) ∧ lab1(v) ∧ Form(∃( 0
u

1
v
→ 0

u

b
e 1

v
))))

= ¬∃u (node(u) ∧ lab0(u) ∧ ¬∃v (node(v) ∧ lab1(v) ∧ ∃e (inc(e, u, v) ∧ labb(e)
∧Form(∃( 0

u

b
e 1

v
→ 0

u

b
e 1

v
)))))

= ¬∃u (node(u) ∧ lab0(u) ∧ ¬∃v (node(v) ∧ lab1(v) ∧ ∃e (inc(e, u, v) ∧ labb(e) ∧ true)))
≡ ∀u ((node(u) ∧ lab0(u))⇒ ∃v ∃e (node(v) ∧ lab1(v) ∧ inc(e, u, v) ∧ labb(e))).

with the same meaning “For every node u with label 0, there is a node v with label 1
and an b-labeled edge from u to v.”
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The proof of Theorem 11 depends on the following lemma.

Lemma 5. For all conditions c over P and all graphs G we have: For all graph morphisms
m:P → G and all assignments σ: Var→ DG with m = σ[DP ],

m |=A c iff GJForm(c)K(σ) = true.

Proof. By structural induction.
Basis. For c = true, we have m |= true⇔ GJtrueK(σ) = true.
Hypothesis. Assume the statement holds for condition c′.
Step. For conditions of the form c = ∃(a, c′), the statement is proved by induction
over the decomposition of morphisms. If the morphism a is the identity id: P → P , we
observe for all morphisms m:P → G, and all assignments σ: Var→ DG with m = σ[DP ],
m |=A ∃(id, c′)⇔ m |=A c′ ⇔ GJForm(c′)K(σ) = true (hypothesis for c′).

Assume, the statement holds for a condition ∃(a, c′). We prove that the statement
holds for all conditions ∃(a′, c′) with extended morphism a′ = a[vb], a[euvb], a[u=v], and
a[e=e′]:

(1) m |=A ∃([vb]a, c′)
⇔ m |=A ∃([vb]P → P, ∃(a, c′)) (Def. |=A)
⇔ ∃m′. m = m′ ◦ [vb]P → P and m′ |=A ∃(a, c′) (Def. |=A)
⇔ ∃o ∈ DG. σ′ = σ{v/o} and GJnode(v)K(σ′) = true

and GJlabb(v)K(σ′) = true and GJForm(∃(a, c′))K(σ′) = true (Hyp., σ′[DP ] = m′)
⇔ GJ∃v (node(v) ∧ labb(v) ∧ Form(∃(a, c′)))K(σ) = true (Def. JK)
⇔ GJForm(∃([vb]a, c′))K(σ) = true (Def. Form)
⇔ G |= Form(∃([vb]a, c′)) (Def. |=)
(2) m |=A ∃([euvb]a, c′)
⇔ m |=A ∃([euvb]P → P, ∃(a, c′)) (Def. |=A)
⇔ ∃m′. m = m′ ◦ [euvb]P → P and m′ |=A ∃(a, c′) (Def. |=A)
⇔ ∃o ∈ DG. σ′ = σ{e/o} and GJinc(e, u, v)K(σ′) = true

and GJlabb(e)K(σ′) = true and GJForm(∃(a, c′))K(σ′) = true (Hyp., σ′[DP ] = m′)
⇔ GJ∃e (inc(e, u, v) ∧ labb(e) ∧ Form(∃(a, c′)))K(σ) = true (Def. JK)
⇔ GJForm(∃([euvb]a, c′))K(σ) = true (Def. Form)
⇔ G |= Form(∃([euvb]a, c′)) (Def. |=)
(3) m |=A ∃([u=v]a, c′)
⇔ m |=A ∃([u=v]P → P, ∃(a, c′)) (Def. |=A)
⇔ ∃m′. m = m′ ◦ [u=v]P → P and m′ |=A ∃(a, c′) (Def. |=A)
⇔ σ(u) =σ(v) and GJu = vK(σ) = true

and GJForm(∃(a, c′))K(σ) = true (Hyp., σ[DP ] = m′)
⇔ GJ(u = v ∧ Form(∃(a, c′)))K(σ) = true (Def. JK)
⇔ GJForm(∃([u=v]a, c′))K(σ) = true (Def. Form)
⇔ G |= Form(∃([u=v]a, c′)) (Def. |=)
(4) m |=A ∃([e=e′]a, c′) ⇔ G |= Form(∃([e=e′]a, c′)) (similar to (3)).

Since all identity-preserving graph morphisms may be decomposed into graph morphisms
that subsequently add nodes, add edges, identify nodes and identify edges, the statement
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holds for all conditions of the form ∃(a, c′). For conditions built with the operators ¬, ∧,
the proof of the statement is straightforward.

Proof of Theorem 11. For all conditions c over ∅ and all graphs G, we have the following:
G |=A c iff for all morphisms iG: ∅ → G, iG |=A c (Definition |=A) iff for all assignments
σ: Var→ DG, GJForm(c)K(σ) = true (Lemma 5, for P = ∅ and Free(Form(c)) = ∅ = DP )
iff G |= Form(c) (Definition |=). �

By Theorems 10 and 11, we obtain the equivalence of graph conditions underA-satisfiability
and first-order graph formulas.

Corollary 7 (A: equivalence of graph conditions and graph formulas).
A-satisfiable graph conditions and first-order graph formulas are expressively equivalent.

formulas
Form

Cond conditions
A-sat

The standard semantics for high-level conditions isM-satisfiability. By Fact 4 and Theo-
rems 1 and 2, A-satisfiable graph conditions can be transformed intoM-satisfiable graph
conditions and vice versa. Therefore,M-satisfiable graph conditions and first-order graph
formulas are expressively equivalent, as well.

Corollary 8 (M: equivalence of graph conditions and graph formulas).
M-satisfiable graph conditions and first-order graph formulas are expressively equivalent.

formulas
FormM

CondM conditions
M-sat

Proof. Immediate consequence of Theorems 10, 11 together with Theorems 1, 2, which
allow to switch between A- and M-satisfiability: Define CondM = Msat ◦ Cond and
FormM = Form ◦Asat. By Theorems 10 and 1, for all formulas F over Σ and all graphs
G, G |= F ⇔ G |=A Cond(F ) ⇔ G |= Msat(Cond(F )) = CondM(F ). By Theorems 11
and 2, for all formulas F over Σ and all graphs G, G |= c ⇔ G |=A Asat(c) ⇔ G |=
Form(Asat(c)) = FormM(c).

formulas
conditions
A-sat

conditions
M-sat

Cond

Form

Msat

Asat

CondM

FormM

Conditions and formulas are finite, if the index set J of every conjunction ∧j∈J and
every disjunction ∨j∈J is finite. In the following, we want to strengthen the statement of
Corollary 8 by showing that every finite graph condition can be translated into a finite
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first-order graph formula and vice versa. We state additional requirements for a weak
adhesive HLR category to ensure the effectiveness of the constructions in this paper.

Assumption 2. Let 〈C,M〉 be a weak adhesive HLR category with
− a finite number of epimorphisms for every given domain, i.e., for all objects P , there

exist only finitely many epimorphisms with domain P up to isomorphism, and
− a finite number of matches, i.e. for every morphism l:K ↪→ L and every object G,

there exist only finitely many morphisms m:L→ G up to isomorphism s.t. 〈l,m〉 has
a pushout complement.

A finite number of matches implies finitely many morphisms between every pair of ob-
jects. The category (Graphs, Inj ) satisfies the above requirements.We exemplarily show
that Asat and Msat yield finite results for finite inputs.

Fact 13 (transformation of finite conditions). Let 〈C,M〉 be a weak adhesive HLR
category with a finite number of epimorphisms for every given domain. For every finite
condition c, the conditions Msat(c) and Asat(c) of Theorem 1 and 2 are finite, respec-
tively.

Proof. For Msat(c) we have: As C has a finite number of epimorphisms for a given
domain, the set E in the construction of Msat(e, c) is finite for every epimorphism e, and
the set E in the construction of Msat(c) is finite. For Asat(c) we have: As C has a finite
number of epimorphisms for a given domain, the set E in the construction of inMC is
finite for every object C ∈ C, therefore Asat(c) is finite.

Every finite graph condition can be translated into a finite first-order graph formula and
vice versa.

Fact 14 (equivalence of finite graph conditions and finite graph formulas).
M-satisfiable finite graph conditions, A-satisfiable finite graph conditions and finite first-
order graph formulas are expressively equivalent.

Proof. By Corollaries 7 and 8, it suffices to show that all involved transformations
preserve finiteness. For every finite graph condition c, the graph formula Form(c) is
finite: For every graph morphism, there exists a finite decomposition, such that each
morphism either adds a node, adds an edge, identifies two nodes, or identifies two edges.
For every finite first-order graph formula F , the graph condition Cond(F ) is finite: The
disjunctions in the case Cond(X, ∃x F ) are finite, as the label alphabet C = CV ∪ CE

is finite. As the category (Graphs, Inj ) satisfies Assumption 2, we have by Fact 13: For
every finite graph condition c, the graph conditions Msat(c) and Asat(c) are finite.

By the undecidability of first-order graph formulas, we get that there are no effective
procedures for deciding if a given graph condition is satisfiable at all, satisfied by every
graph, nor if a given graph condition implies another given graph condition.

Corollary 9 (Undecidability of graph conditions). The satisfiability, the tautology,
and the implication problem of (finite) graph conditions are undecidable.
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Proof. Assume, the problems were decidable for (finite) graph conditions. By Corol-
lary 8, we could construct for every (finite) first-order graph formula Fj (i = 1, 2) a
(finite) graph condition CondM(Fj) such that G |= Fj iff G |= CondM(Fj). Then the
satisfiability problem of (finite) first-order graph formulas would be decidable, contradic-
tion (Trakhtenbrot 1950; Courcelle 1990).

9. Conclusion

In this paper, the concepts of constraints and application conditions, investigated in e.g.
(Heckel and Wagner 1995; Ehrig et al. 2006b; Koch et al. 2005), are unified and general-
ized to nested conditions over graph-like structures, along the lines of (Rensink 2004). As
demonstrated by a case study on the handover protocol of mobile phones, graph condi-
tions constitute a graphical and intuitive, yet precise formalism for specifying structural
properties of system states. The results of this paper concern weak adhesive HLR sys-

Symbol Description Reference

Msat From A- to M-satisfiability Theorem 1
Asat From M- to A-satisfiability Theorem 2

B, N (Interface) transformation of conditions Lemma 2
Q From A- to M-matching Theorem 3
R From M- to A-matching Theorem 4

A From constraints to application conditions Theorem 5
L From right to left application conditions Theorem 6
C∀, C∃ From application conditions to constraints Theorem 7
Appl Construction of “gluing conditions” Theorem 8

Cond From formulas to graph conditions Theorem 10
Form From graph conditions to formulas Theorem 11

Table 1. Transformations of conditions and rules

tems with nested application conditions and are listed in Table 1. Notable results are
the transformations between M- and A-satisfiability of conditions, Msat and Asat, as
well as the transformations between A- andM-matching of rules, R and Q, respectively.
These transformations prove that if the monomorphism classM is strictly closed under
decomposition, then the considered satisfiability and matching concepts are expressively
equivalent. Otherwise, the notions of M-satisfiability and M-matching are more ex-
pressive. Moreover, the transformations can be applied to switch between the preferred
notions of a user and the implemented notions of a rule-based transformation tool, and
provide the basis for a data exchange between tools with different semantics. Finally,
Msat and Asat enable the composition of complementary condition transformations in
the case of A-satisfiability, such as LA.

A number of transformations between constraints and application conditions are in-
vestigated that can be used to develop correct transformation systems. This includes
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transformations of constraints into application conditions, A, of right- into left applica-
tion conditions and vice versa, L, and of application conditions in constraints, C∀ and
C∃. Moreover the construction of an application condition (Appl) is considered that
guarantees the applicability of the rule.

constraint

right application
condition

left application
condition

constraint

rule
Appl

A

L

C∀, C∃ Wlp

Sp

Figure 4. Basic transformations of conditions

The above basic transformations enable the construction of constraint-guaranteeing
and constraint-preserving application conditions with the aim of restricting the applica-
bility of rules to yield correct transformation systems. Moreover, the basic transforma-
tions are used for the construction of weakest preconditions (Dijkstra 1976; Dijkstra and
Scholten 1989) and strongest postconditions with the aim to verify the correctness of
transformation systems, see (Habel et al. 2006; Azab et al. 2006). For instance, if a given
precondition implies the weakest precondition of a program relative to a postcondition,
then the program in consideration is correct with respect to the pre- and postcondition
(Habel et al. 2006).

Finally, transformations between graph conditions and first-order graph formulas are
investigated. A main result of this paper is that both concepts are expressively equiv-
alent, i.e. nested graph conditions capture exactly first-order graph properties. As a
consequence, graph conditions inherit undecidability results for the satisfiability, tautol-
ogy and implication problem. On the other hand, the transformation FormM of graph
conditions to graph formulas enables the use of existing first-order automated theorem
provers and satisfiability solvers.

FormM

FormM

⇒ theorem prover,

satisfiability solver

F1

F2

F1 ⇒ F2

condition c1

condition c2

yes/no/unknown

Figure 5. Semi-decider for the implication problem of M-satisfiable graph conditions

Further topics may be the following.

(1) Generalization of conditions. Generalization of nested conditions to capture monadic
second order properties. Consideration of temporal logic.

(2) Extensions of the theory. A consideration of conditions over partial and partially
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labeled graphs. An investigation of weakest preconditions for rules with external in-
terface (Pennemann 2008a).

(3) Implementation. The construction of weakest preconditions for transformation rules
(via transformations A,L,C∀ and Appl). The implementation of condition-based the-
orem provers (Orejas et al. 2008; Orejas 2008; Pennemann 2008b) and satisfiability
solvers (Pennemann 2008a) to tackle the implication problem, and the application of
existing theorem provers and satisfiability solvers (via FormM) as a comparison. The
implementation of semantic converters for rules and conditions to freely switch be-
tween A-/M-satisfiability and A-/M-matching), see (Azab et al. 2006; Zuckschwerdt
2006).
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