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Many modeling problems can be solved using graphs. Attribution is an important
expansion for graph models. Changes to these models can be formalised using graph
transformation and there are several approaches to expanding graph transformation
to handle attributed graphs.

In this thesis we briefly survey these existing approaches to attribution in graph
transformation. We conduct a more detailed comparison of two of these approaches
and present transformations between these attributed graphs.

We further introduce a new attribution concept, based on a generalization of par-
tially labelled graphs and prove their suitability for graph transformation.
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1 Introduction

Graphs are an elegant solution to many modeling problems in computer science.
Graph transformation provides a well developed theory to further model the changes
these graph models undergo. Attributes play an important role in many graph
models, for example UML. While it is technically possible to include additional
elements in a graph to model the properties that attributes can be used for, this can
easily make the resulting models difficult to understand and therefore less useful.

To enable transformation of attributed graphs, several approaches have been devel-
oped:

• In [EEPT06] Typed Attributed Graphs are introduced, expanding the graph
by including an algebra for attribute values. To facilitate attribution, Typed
Attributed Graphs extend graphs by attribution nodes and attribution edges.
All possible data values of the algebra are assumed to be part of the graph.
Nodes and edges are attributed by adding an attribution edge that leads to
an attribution node.

• [KR12] takes a similar approach, but instead of only encoding the data values,
operations and constants are also included in the graph.

• The graph programming language GP, as described in [Plu09], uses a different
approach to attribution. Here labels are replaced by sequences of attributes.
Rules are complemented by rule schemata in which terms over the attributes
are specified. These variables are substituted with attribute values and evalu-
ated during rule application.

• The approach in [LKW93] views graphs as a special case of algebras. These
algebras can then additionally specify types for attributes.

• Instead of modifying the definition of graphs and graph transformations to
include attributes, [Gol12] defines an attribution concept over arbitrary cate-
gories.

We will evaluate two of these approaches, Typed Attributed Graphs [EEPT06] and
the graphs used in the graph programming language GP [Plu09], later in this the-
sis.
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Chapter 1 Introduction

Independent of the evaluation of existing approaches, we can already consider some
expectations we have of attributed graphs:

• There should be a clear separation between the graph and its attributes, thus
giving the user the choice which aspects to model explicitly and which to
capture with attributes.

• It should be possible to attribute both nodes and edges.

• There should only be a single value associated with an attribute.

• An attribute should always have a value.

• Ideally, existing rules for unattributed graphs should be usable with minimal
changes in an attributed graph.

Additional requirements will be developed later in this thesis, in particular based
on our observations during the comparison of existing approaches.

The remainder of this thesis is organized as follows:

Chapter 2 will cover the basic notions of graphs and graph transformation, as well
as category theory and algebraic specifications. Existing attribution concepts for
graphs will be detailed in chapter 3 and are compared to each other in chapter 4.
Further requirements for an attribution concept will be discussed in chapter 5. Also
a new concept will be introduced based on these requirements. This new concept
will be analyzed in chapter 6. Finally chapter 7 contains conclusions and ideas for
future work.
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2 Preliminaries

This chapter briefly covers the basic notions of graphs and graph transformation, as
well as category theory and algebraic specifications.

2.1 Graph Transformation

This section presents partially labelled graphs and transformation rules with re-
labelling as introduced in [HP02]. We present this approach instead of the more
common approach of rules without relabelling over labelled graphs [EEPT06] since
the attribution concept in [Plu09] depends on relabelling and the newly presented
concept in chapter 5 has a lot of similarities to graph withs relabelling.

Additionally this section presents definitions based on set theory from [Ehr79], while
the literature has moved to definitions based on category theory. For a reader only
interested in the applications of graph transformation, the definitions presented here
should be sufficient. For the proofs in later chapters however, category theory will
be needed.

The definitions based on category theory are presented in section 2.2 later in this
chapter.

In the following, directed partially labelled graphs and their morphisms are de-
fined. For an in-depth introduction to Graph Transformation see for example
the Handbooks of Graph Grammars and Computing by Graph Transformation
[Roz97, EEKR99, EKMR99].

Definition 2.1 (Graph)
A partially labelled graph, short graph, is a system G = (VG, EG, sG, tG, lG,V , lG,E)
consisting of two finite sets VG and EG of nodes and edges, two source and target
functions sG, tG : EG → VG, and two partial1 labelling functions lG,V : VG → L and
lG,E : EG → L, where L is a fixed set of labels.

1We denote the domain of a function f by Dom(f) and the range by Ran(f).
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Chapter 2 Preliminaries

EG VG

L

sG

tG

lG,E lG,V

A partially labelled graph G is said to be totally labelled if lG,V and lG,E are total
functions and it is unlabelled if the domains of lG,V and lG,E are empty.

Example 2.1
The graph H = (VH , EH , sH , tH , lH,V , lH,E), with node set VH = {v1, v2, v3, v4, v5},
edge set EH = {e1, e2, e3, e4, e5, e6}, source function sH : EH → VH : e1, e2, e3 7→
v1, e4, e5 7→ v4, e6 7→ v3, target function tH : EH → VH : e1 7→ v2, e2 7→ v4, e3, e4 7→
v3, e5, e6 7→ v5, node label function lH,V : VH → L : v1 7→ a, v4 7→ c, v5 7→ d and
totally undefined edge label function lH,E is shown in figure 2.1.

v2

a v1

c v4

v3

d v5

e1
e2

e3

e4

e5

e6

Figure 2.1: Example of a Graph

Remark
If we don’t want to distinguish between nodes and edges we use the term item for
either of the two and the notation x ∈ G means x ∈ VG or x ∈ EG.

We use functions between the components of graphs that preserve the structure of
the graph (i.e. the sources and targets of edges) to express structural similarities
between two graphs and we refer to these pairs of functions as graph morphisms.
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2.1 Graph Transformation

Definition 2.2 (Graph Morphism)
A graph morphism g : G→ H from a graph G to a graph H consists of two functions
gV : VG → VH and gE : EG → EH that preserve sources, targets and labels, that is,
sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG and lH(g(x)) = lG(x) for all x in Dom(lG), as
shown in the diagram below.

EG VG

L

EH VH

sG

tG

sH

tH

lG,E lG,V

lH,E lH,V

gE gV

The morphism g preserves undefinedness if lH(g(x)) = ⊥ for all x in G \Dom(lG),
and it reflects undefinedness if g−1(x) 6= ∅ for all x in H \ Dom(lH).

A morphism g is injective ( surjective) if gV and gE are injective (surjective), and an
isomorphism if it is injective, surjective and preserves undefinedness. In the latter
case G and H are isomorphic, which is denoted by G ∼= H. Furthermore, we call g
an inclusion if g(x) = x for all x in G.

Example 2.2
The morphism shown in figure 2.2 maps the graph G = (VG, EG, sG, tG, lG,V , lG,E),
with nodes VG = {s1, s2}, edges EG = {r1}, source function sG : EG → VG : r1 7→ s1,
target function tG : EG → VG : r1 7→ s2, node labeling function lG,V : VG → L : s1 7→
a and undefined edge label function lG,E to the graph from example 2.1 as follows:
gV : VG → VH : s1 7→ v1, s2 7→ v2 and gE : EG → EH : r1 7→ e1.

The morphism shown in example 2.2 and figure 2.2 is not the only possible morphism
between the graphs G and H. We could map s2 to v3 or v4 for example, although
g(r1) would have to change too since its target would not be preserved otherwise.
Changing the value of g(s1) on the other hand is not possible, since there is no node
besides v1 in H that is labelled with a.

Using these morphisms we can now define a rule that is used to change a graph. We
create rules by constructing three graphs and two morphisms. To control where in
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Chapter 2 Preliminaries

as1

s2

v2

a v1

c v4

v3

d v5

g

g

g

Figure 2.2: Example of a Graph Morphism

a graph we want the changes of a rule to take effect we need to specify a part of the
target graph, which we call the left-hand side. To specify the elements we want to
remove, we construct one graph that contains all but those elements of the left-hand
side, we call this graph the interface. Finally we create a graph that contains all
elements of the interface and any elements we want to add, we call this graph the
right-hand side. There are now two morphisms from the interface to the left-hand
side and the right-hand side respectively.

Definition 2.3 (Rule)
A rule r = 〈L← K → R〉 consists of two inclusions K → L and K → R such that

(1) for all x ∈ L, lL(x) = ⊥ implies x ∈ K and lR(x) = ⊥,

(2) for all x ∈ R, lR(x) = ⊥ implies x ∈ K and lL(x) = ⊥.

We call L the left-hand side, R the right-hand side and K the interface of r. If L
and R are totally labelled conditions (1) and (2) are trivially satisfied.

Example 2.3
The rule shown in figure 2.3 consists of a left-hand side with the graph from example
2.2, an interface of a single unlabeled node and a left-hand side of a single node
labeled c as seen in figure 2.3.

The rule changes the first node’s label from a to c and deletes the edge and the second
node.

To apply a rule to a graph we have to find a match, that is we find a morphism from
the left-hand side of the rule to the target graph.

Not all morphisms from the left-hand side of a rule into a target graph allow an
application of the rule. The result of a derivation should still be a graph, i.e. all
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2.1 Graph Transformation

a c
a b

Figure 2.3: Example of a Rule

edges should have a source and a target. For this reason we forbid the application
of a rule, if there are edges in the target graph that coincide with nodes that will
be deleted by the rule.

Definition 2.4 (Dangling Condition)
Given a rule r = 〈L ← K → R〉, an injective morphism g : L → G satisfies the
dangling condition if no edge in EG \ gE(EL) is incident to a node in gV (VL \ VK).

If the morphism from example 2.2 were to map the node s2 in the left-hand side of
the rule from example 2.3 to v4 for example, the subsequent deletion of that node
would leave two edges dangling without a source.

If we have a match that satisfies the dangling condition, we can construct a new
graph using the three parts of a rule. We remove all elements (and labels) that are
part of the left-hand side but not of the interface and add all the elements (and
labels) that are part of the right-hand side but not part of the interface.

Definition 2.5 (Direct Derivation)
Given a rule r = 〈L ← K → R〉 and a graph G with an injective graph morphism
g : L → G satisfying the dangling condition, called the match, a direct derivation
(or graph transformation) is the transformation of G into a graph H constructed as
follows:

L

G

K

D

R

H

g (1) (2)

(1) Delete g(L \K) and the labels of g(K⊥) from G yielding a graph D,

(2) Add R \K and the labels of lR(K⊥) to D yielding a graph H,
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Chapter 2 Preliminaries

where K⊥ is the set of all unlabelled nodes in K.

We write G⇒r,g H if there exists such a direct derivation.

Example 2.4
The direct derivation in figure 2.4 is the application of the rule from example 2.3,
using the morphism from example 2.2 as the match g. The rule removes the node
v2 and changes the label of v1 from a to c.

a c
a b

a

c

d

c

d

c

c

d

g

Figure 2.4: Example of a Direct Derivation
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2.2 Category Theory

2.2 Category Theory

As mentioned in section 2.1 graph transformation is most commonly defined in terms
of category theory. In the following we briefly cover some definitions from category
theory that will be used throughout the remainder of the thesis. For an in-depth
introduction see for example [Sim11] or [AHS09].

Definition 2.6 (Category)
A category is a system A = (obj,morph, src, trgt, id, ◦) consisting of a collection obj
of objects, a collection morph of morphisms2, two assignments src, trgt : morph →
obj, an assignment id : obj → morph, and a partial composition ◦ : morph ×
morph → morph, subject to the following conditions:

• (Associativity) Composition of morphisms is associative; i.e. for morphisms
f : A → B, g : B → C and h : C → D the equation h ◦ (g ◦ f) = (h ◦ g) ◦ f
holds.

• (Identity) Identities act as such with respect to composition; i.e. for a mor-
phism f : A→ B, we have idB ◦ f = f and f ◦ idA = f .

Example 2.5
Partially labelled graphs and graph morphisms, as presented in section 2.1 constitute
a category GraphsPLG, where composition of morphisms is defined componentwise as
function composition.

The definitions for pullbacks and pushouts presented here are closer to those in
[EEPT06] than in the books mentioned above, this is because these definitions do
not require additional definitions before defining pullbacks and pushouts.

A useful intuition for a pullback is that of the intersection of two objects.

Definition 2.7 (Pullback)
Given morphisms a : A → C and b : B → C a pullback (D, a′, b′) over a and b is
defined by a pullback object D and morphisms a′ : D → A and b′ : D → B with
a ◦ a′ = b ◦ b′ such that the following universal property holds: for all objects X with
morphisms c : X → A and d : X → B with a ◦ c = b ◦ d, there is a unique morphism
u : X → D such that a′ ◦ u = c and b′ ◦ u = d.

2 or arrows, but more commonly called morphisms in the context of graphs and therefore the
remainder of this thesis.
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Chapter 2 Preliminaries

A D

C B

a′

a

b

b′

X

d

c
u

A useful intuition for a pushout is an object that represents a union of two objects.

Definition 2.8 (Pushout)
Given morphisms a : A → B and b : A → C a pushout (D, a′, b′) over a and b is
defined by a pushout object D and morphisms a′ : B → D and b′ : C → D with
a′ ◦a = b′ ◦ b, such that the following universal property holds: for all objects X with
morphisms c : B → X and d : C → X with c ◦ a = d ◦ b there is a unique morphism
u : D → X such that u ◦ a′ = c and u ◦ b′ = d.

A B

C D

a

b

b′

a′

X

c

d

u

A pushout is said to be natural, if it is also a pullback.

Now we can give the category-theoretic definition of a direct derivation:

Fact 2.1 (Direct Derivation[HP02])
A direct derivation from a graph G to a graph H via a rule r = 〈L ← K → R〉
consists of two natural pushouts (1) and (2) as given in the diagram below:

L

G

K

D

R

H

g (1) (2)
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2.3 Algebraic Specifications

2.3 Algebraic Specifications

Many existing attribution concepts for graph transformation use algebraic specifica-
tions. Types and the operations on them are defined in terms of an algebra, which is
then used as a base for constructing attributed graphs. An introduction to algebraic
specifications can be found in [EM85].

We start with the definition of a system of sorts, constants and operations, which
form a signature. The sorts will later be used as the types of attributes, while the
operations are used if computation over attributes is desired.

Definition 2.9 (Signature)
A signature Σ = (S,OP) consists of a set S of sorts and a set OP of constant
and operation symbols. OP is the union of pairwise disjoint subsets: Cs, the set
of constant symbols of sorts s ∈ S and OPw,s the set of operation symbols with
argument sort w ∈ S+ and range sort s ∈ S.

The constants in a signature can also be seen as operations without parameters.

Notation
We also use OPλ,s = Cs with the empty string λ ∈ S∗ and refer to OP by OPw,s

with w ∈ S∗ and s ∈ S.

For the purposes of this thesis we will use a signature that specifies Boolean values,
natural numbers and strings and some operation symbols on these sorts.

Example 2.6
We construct a signature Σ = (S,OP) such that S = {Bool,Nat, String,Alphabet},
that has Boolean values, natural numbers and strings as sorts. The constant and
operation symbols for Boolean values Bool are OPλ,Bool = {true, false}, OPBool,Bool =
{¬} and OPBoolBool,Bool = {∧,∨,⇒,⇔}. The constant and operation symbols for
natural numbers Nat are OPλ,Nat = {zero}, OPNat,Nat = {succ} and OPNatNat,Nat =
{+,−, ∗,÷}. The constant and operation symbols for strings String are OPλ,String =
{epsilon}, OPAlphabet,String = {make} and OPString,String = {concat}.

While the definition of sorts provides for types, we still need values for attributes that
have these types. An algebra defines the sets of values and the concrete operations
for the sorts and operation symbols specified in the signature.

Definition 2.10 (Algebra)
A Σ-algebra A = (SA,OPA) of a signature Σ = (S,OP), consists of two families
SA = (As)s∈S and OPA = (opA)op∈OP where:

17



Chapter 2 Preliminaries

(1) As are sets for all s ∈ S, called base sets of A.

(2) opA are elements opA ∈ As for all constant symbols op ∈ OPλ,s, called con-
stants of A.

(3) opA : As1 × · · · × Asn → As are functions for all operation symbols op ∈
OPs1...sn,s and s1 . . . sn ∈ S+, s ∈ S, called operations of A.

We construct an algebra from the example signature below.

Example 2.7
We construct a Σ-algebra A = (SA,OPA) such that ABool, ANat, AString and AAlphabet
are the sets of Boolean values, natural numbers, character strings and characters re-
spectively, ¬A,∧A,∨A,⇒A,⇔A are the usual Boolean operations, zeroA, succA and
+A are 0, the successor function and addition for natural numbers and epsilonA,
makeA and concatA are the empty string, the construction of a string from a char-
acter and concatenation of strings respectively.

Assumption 2.1
Whenever we refer to a standard algebra in the remainder of this thesis, A from
example 2.7 above is that algebra.

For more involved computation over the values of attributes we would like to con-
struct terms and use variables in the usual manner.
Definition 2.11 (Variables and Terms)
Let Σ = (S,OP) be a signature and Xs for each s ∈ S a set, called set of variables
of sort s. We assume that these sets Xs are pairwise disjoint and also disjoint with
OP. Then:

(1) The union X = (Xs)s∈S is called the set of variables of Σ.

(2) The sets TOP,s(X) of terms of sort s are defined by

1. The basic terms x, c ∈ TOP,s(X) for all x ∈ Xs and all c ∈ OPλ,s.

2. The composite terms op(t1, · · · , tn) ∈ TOP,s(X) for all operation symbols
op ∈ OPs1...sn,s and all terms t1 ∈ TOP,s1(X), · · · , tn ∈ TOP,sn(X).

The set of all terms over Σ and X is denoted by TΣ(X).

These terms can be evaluated by successively replacing constants and operations
with their values. If variables are used, an assignment maps these variables to values,
and an extended assignment also evaluates the resulting variable-free term.

18



2.3 Algebraic Specifications

Definition 2.12 (Evaluation of Terms)
Let TΣ(X) be the set of terms of a signature Σ = (S,OP) and A a Σ-algebra. The
evaluation eval : TΣ(x)→ A) is recursively defined by:

1. eval(op) = opA for all constant symbols op ∈ OPλ,s.

2. eval(op(t1, · · · , tn))=opA(eval(t1), · · · , eval(t2)) for all op(t1, · · · , tn)∈TΣ(X).

Given a set of variables X for Σ = (S,OP) and an assignment α : X → A with
α(x) ∈ As for x ∈ Xs and s ∈ S, the extended assignment, or simply extension
α̂ : TΣ(X)→ A of the assignment α is recursively defined by

1. α̂(x) = α(x) for all variables x ∈ X

2. α̂(op) = opA for all constant symbols op ∈ OPλ,s

3. α̂(op(t1, · · · , tn)) = opA(α̂(t1), · · · , α̂(tn)) for all op(t1, · · · , tn) ∈ TΣ(X).

If t is a variable-free term, then α̂(t) is denoted by tA.

19





3 Existing Attribution Concepts

This chapter covers existing concepts for the attribution of graphs. We start with
a brief survey of various concepts, then examine two of these, Typed Attributed
Graphs by Ehrig et al. and the graphs used in the graph programming language GP
by Plump in more detail. To this end a running example is introduced in section
3.1.

All of the attribution concepts presented here use an algebra to specify types and
values of their attributes. They differ in the way these attribute values are attached
to a graph and how either the graph or the attribute values are represented.

Attributes Encoded in the Graph There are several approaches to attribution that
represent attribute values by elements of the graph. In Typed Attributed Graphs
[EEPT06] graphs are extended with a special node set that holds a node for every
element of an algebras base set. To facilitate attribution of edges Typed Attributed
Graphs allow attribution edges to have an edge as a source. This approach is
extended in [Ore11] to symbolic attributed graphs, which allow the use of variables
in Typed Attributed Graphs and further allows to attach constraints over these
variables to a graph.

In the same vein, [KR12] also represents attribute values by attribute nodes, al-
though attribution edges between edges and attribute nodes are not allowed. The
idea is taken a step further by also encoding the operations specified by the algebra
in the graph.

Typed Attributed Graphs are covered in more detail in section 3.2.

Attributes Encoded in Labels The graph programming language GP [Plu09],
while not presented as an attribution concept, does allow users to attach several
values to both nodes and edges through its rule schemata. Rule schemata allow the
decomposition of labels into these values, which can be seen as a form of attribu-
tion.

The graphs used in GP are covered in more detail in section 3.3.
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Chapter 3 Existing Attribution Concepts

Algebra Interpreted as a Graph The approach of [LKW93] can be seen as the
reverse of the previous approaches. Instead of including the elements of the base sets
of an algebra into a graph, the graph itself is encoded in an algebra. This algebra
additionally specifies types for attributes and operations that allow these attributes
to be attached to nodes or edges.

Attribution of Arbitrary Categories An arbitrary category (graphs for our pur-
poses) can be used as a base for aW-adhesive category [Gol12]. A set of attribution
types determines what attributes are attached to a given node or edge.

3.1 Running Example

This section introduces the running example used in the following sections and
chapters.

The example should contain attributed nodes and attributed edges with multiple
attributes. An overly simple example with a single attribute of a single type per node
or edge risks excluding potential problems with ambiguous attribute identifiers.

“Generica”
100000

“Metropolis”
200000

“A1”
50000
120

Figure 3.1: The Running Example: Cities and Roads

To this end, the example graph consists of a number of cities and roads connect-
ing these cities. Nodes have a city name and population as attributes, edges are
attributed with a name, a length and a speed limit.

Since the road connections are undirected and the roads attributes will be the same
for both directions unify the two edges between cities and only show their common
attributes once.

22



3.2 Typed Attributed Graphs a la Ehrig et al.

3.2 Typed Attributed Graphs a la Ehrig et al.

Typed Attributed Graphs [EEPT06] are based on graphs without labels. Whenever
we refer to a graph in this section we therefore assume that it is unlabelled.

To nonetheless enable us to attach names to nodes and edges, graphs can be typed
instead. In a typed graph edges and labels are mapped to elements of a type graph
with a morphism. The name of the object in the type graph that an object is
mapped to determines its type.

Definition 3.1 (Typed Graph)
A type graph is a graph TG = (VTG, ETG, sTG, tTG). VTG and ETG are called the
vertex and the edge type alphabets, respectively. A tuple (G, type) of a graph G
together with a graph morphism type : G→ TG is called a typed graph.

Given typed graphs GT = (G, typeG) and HT = (H, typeH), a typed graph morphism
f : GT → HT is a graph morphism f : G→ H such that typeH ◦ f = typeG.

GT HT

T

f

typeG typeH
=

Example 3.1
An example of a typed graph is shown in figure 3.2.

v1 v2

e1

e2

City

Road

New

Figure 3.2: A Typed Graph
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Chapter 3 Existing Attribution Concepts

Note that typed graphs also allow restriction as to which types can be assigned to
which edges. In example 3.1, the node v1 could not be assigned the type New, since
the typing morphism, being a graph morphism, must preserve sources and targets
of edges.

In earlier approaches [HKT02] attribution was done by introducing edges to attribute
nodes. In these approaches attribution was limited to nodes. To accommodate
attributes for edges as well as nodes the definition of graphs is extended to allow for
special edges between edges and attribute nodes.
Definition 3.2 (E-Graph)
An E-graph G = (VG, DG, EG,VAG,EAG, (sj, tj)j∈{G,NA,EA}) consists of the sets

• VG and DG, called the graph nodes and data nodes;

• EG, VAG and EAG, called the graph edges, node attribute edges and edge
attribute edges, respectively;

and the source and target functions

• sG, tG : EG → VG for graph edges;

• sNA : VAG → VG and tNA : VAG → DG for node attribute edges;

• sEA : EAG → EG and tEA : EAG → DG for edge attribute edges:

EG VG

EAG VAGDG

sG

tG

sEA sVA

tEA tVA

We introduce a new set of nodes DG specifically for the attribute values and two
new sets of nodes VAG and EAG for edges for the attribution of nodes and edges
respectively.
Example 3.2
Figure 3.3 shows the city example as an E-graph. The dashed edges attach attribute
nodes to the graph nodes n1 and n2. Note that the attribute nodes have no defined
type and the attribution edges have no names.

We define morphisms for E-graphs that also preserve the sources and targets of
attribution edges.

24
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n1 n2

100000 200000

50000 120

“Generica” “Metropolis”

“A1”

e1

e2

Figure 3.3: E-Graph of the City Example

Definition 3.3 (E-Graph Morphism)
Consider the E-graphs G and H. An E-graph morphism f : G → H is a tuple
(fV , fD, fE, fNA, fEA) with fi : iG → iH for i ∈ {V,D,E,NA,EA} such that f
commutes with all source and target functions, for example fV ◦ sG = sH ◦ fE, as
seen in the diagram below.

EG VG

EAG VAGDG

sG

tG

sEA sVA

tEA tVA

EH VH

EAH VAHDH

sH

tH
sEA sVA

tEA tVA

fE fVfEA fVAfD

To construct an attributed graph we combine an E-graph with an algebra over a data
signature Σ. The base sets corresponding to the sorts of the signature are used as
the attribute values and together form DG.
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Chapter 3 Existing Attribution Concepts

Definition 3.4 (Attributed Graph and Morphism)
Let Σ = (SD,OPD) be a data signature with attribute value sorts S ′D ⊆ SD. An
attributed graph AG = (G,D) consists of an E-graph G together with a Σ-algebra
D such that ∪̇s∈S′

D
Ds = DG, where ∪̇ is a disjoint union.

For two attributed graphs GA = (G,E) and HA = (H,F ), an attributed graph
morphism f : GA → HA is a pair f = (fG, fA) with an E-graph morphism fG :
G→ H and an algebra homomorphism fA : E → F such that (1) commutes for all
s ∈ S ′D, where the vertical arrows below are inclusions:

E F

DG DH

fA

fG,D

(1)

Example 3.3
The E-graph in example 3.2 is also an attributed graph, given an appropriate algebra
and assuming the existence of additional nodes for its base sets.

While attributed graphs already allow us to attach an arbitrary number of values of
different sorts to both nodes and edges we have no way to refer to specific attributes.
To rectify this we use typing, where an E-graph acts as the type graph. We introduce
an attribute node for each sort of the algebra and identify all values with their
respective sorts via the typing morphism. For each node or edge type we specify in
the type graph, we add attribute edges to the attribute nodes we created previously.
We can name these edges and thus the attributes in the typed graph.

Definition 3.5 (Typed Attributed Graph)
Given a data signature Σ, an attributed type graph is an attributed graph ATG =
(TG,Z), where Z is the final Σ-algebra. A typed attributed graph (AG, t) over
ATG consists of an attributed graph AG together with an attributed graph morphism
t : AG → ATG.

Given two typed attributed graphs (AG, tG and (AH , tH over ATG, a typed at-
tributed graph morphism f : (AG, tG)→ (AH , tH) is an attributed graph morphism
f : AG → AH such that tH ◦ f = tG.

Lemma 3.1
Typed Attributed Graphs and their morphisms form a category GraphsTAG, where
composition of morphisms is componentwise function composition.
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3.2 Typed Attributed Graphs a la Ehrig et al.

City Roadstring natname

population

name

traffic

speedlimit

Figure 3.4: Attributed Type Graph of the City Example

Example 3.4
To construct a Typed Attributed Graph from example 3.2 we first construct an ap-
propriate type graph, such as the attributed graph in figure 3.4 and then combine
the two using a typing morphism as seen in figure 3.5. For readability the typing
morphism is only shown for nodes.

Since figures even for small typed attributed graphs become rather large a simplified
notation is provided, as seen in figure 3.6. The figure shows the same graph as figure
3.5, but does not depict the type graph and typing morphism as separate from the
graph. Instead their existence is implied by the graphs annotation, such as the name
“n1:City” instead of simply “n1” which tells us that the node “n1” is mapped to the
type “City” by the typing morphism.
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n1 n2

100000 200000

50000 120

“Generica” “Metropolis”

“A1”

e1

e2

City Roadstring natname

population

name

traffic

speedlimit

Figure 3.5: Typed Attributed Graph of the City Example

n1:City
name=“Generica”
population=100000

n2:City
name=“Metropolis”
population=200000

e1:Road
name=“A1”
traffic=50000

speed limit=120

e2:Road
name=“A1”
traffic=50000

speed limit=120

Figure 3.6: Simplified Typed Attributed Graph of the City Example
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3.3 Attributed Graphs a la Plump

While the graph programing language GP [Plu09] uses attributes for the nodes and
edges of its graphs it does not rely on any of the concepts for the attribution of graphs
that were in use previously. GP uses partially labelled graphs with relabelling,
as introduced in section 2.1, but instead of changing the definition of graphs to
accommodate attributes GP uses rule schemata to similar effect.

Remark
There is a newer version of GP, called GP2 [Plu11]. It does not change the way it
handles attribution beyond changing the preset types of attributes that are allowed.

The definition of graphs and graph morphisms for GP follow those in [HP02] as
covered earlier in section 2.1, except as follows:

Definition 3.6
Let S be the set of strings over {a, b, · · · , z}. The labels L in the previous definitions
are concretized with the set (Z ∪ S)+ of all nonempty sequences over integers and
character strings.

The following definitions are taken from [PS04].

Assumption 3.1
In the following we assume the use of a signature Σ and corresponding Σ-algebra A
as defined in the examples in section 2.3.

Since rules for partially labelled graphs do not allow a decomposition of labels, we
need some way to access the individual attribute values that are encoded in the
labels. To this end schemata are introduced that allow the use of variables in labels.
Changing a specific attribute is just a matter of replacing this variable with a value
or a term in the right-hand side of the rule schema.

Definition 3.7 (Rule Schema and Instances of Rule Schema)
A rule r = 〈L← K → R〉 is called a schema if L, K and R are graphs over TΣ(X).

Given a graph G over TΣ(X) and an assignment α : X → A, the instance Gα of G is
the graph over SA obtained from G by replacing the labelling functions lG with α̂◦ lG,
where α̂ is the extension of α. The instance of a rule schema r = (L← K → R) is
the rule rα = (Lα ← Kα → Rα).
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L

Lα

K

Kα

R

Rα

α α α

Besides computation on attributes GP also offers some flow control. To this end rules
can be equipped with negative application conditions similar to those in [HHT96].
In later versions the conditions are replaced with nested application conditions, as
presented in [HP09].

Definition 3.8 (Conditional Rule)
A conditional rule q = (r,M) consists of a rule r = (L← K → R) and a set M of
graph morphisms such that M ⊆ {g : L→ G|G is a graph over the base sets SA and
g is a match for r}.

With the addition of a Boolean term to a rule schema we get a conditional rule
schema. The term may contain the operation symbol edge in addition to those in
the signature Σ, this symbol is used to check for the existence of edges.

Definition 3.9 (Conditional Rule Schema)
Given a rule schema (L← K → R), extend the signature Σ to ΣL = (SL,OPL) by
SL = S ∪ Node,OPL

λ,Node = VL,OPL
NodeNode,Bool = {Edge},OPL

w,s = OPw,s if w ∈ S∗
and s ∈ S, and OPL

w,s = ∅ otherwise. Then a term c in TOPL,Bool(X) is a condition
and 〈(L← K → R), c〉 is a conditional rule schema.

Instantiating a conditional rule schema is done by instantiating the rule schema and
then evaluating the condition. The instances can only be applied to a graph when
the condition evaluates to true.
Definition 3.10 (Instance of a Conditional Rule Schema)
Given a conditional rule schema r = 〈(L← K → R), c〉, an assignment α : X → A
and a graph morphism g : Lα → G with G a graph over SA, define the extension
αg : TΣL(X)→ A as follows:

(1) αg(x) = α(x) and αg(c) = cA for all variables x and all constants c in Σ1.

(2) αg(edge(v, w)) =

tt if there is an edge in G from g(v) to g(w)
ff otherwise

1Note that αg is undefined for all constants in OPL
λ,Node.
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3.3 Attributed Graphs a la Plump

(3) αg(op(t1, · · · , tn))=opA(αg(t1), · · · , αg(tn)) for all op(t1, · · · , tn) ∈ TOPL,SL(X)
with op ∈ OP.

Then the instance rα of r is the conditional rule 〈(Lα ← Kα → Kα),M〉 where
M = {g : Lα → G|G is a graph over SA, g is a match and αg(c) = tt}.

Example 3.5
Figure 3.7 shows the running example as it could be used in GP. Attributes are
encoded in the labels and separated by “_”.

“Generica”_100000 “Metropolis”_200000

“A1”_50000_120

“A1”_50000_120

Figure 3.7: Attributed Graph a la Plump of the City Example

As can be seen from the above definitions GP is primarily concerned with com-
putation over attributes in graph programs. It does also, however, introduce an
interesting concept for handling attribution in graphs.
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4 Comparison of Attribution
Concepts

In this chapter, we compare the two concepts covered in greater depth in the pre-
vious chapter, Typed Attributed Graphs by Ehrig et al. and the graphs used in
the graph programming language GP by Plump. In the remainder of this chapter
we refer to the two concepts as Ehrig-attributed graphs and Plump-attributed graphs
respectively. We start with looking at a set of example rules and explore how both
concepts work and what issues can arise from their usage. Additionally, transforma-
tions between the two concepts are introduced. The chapter concludes with a short
summary of the results of the comparison.

4.1 Example Rules

We are interested not only in the theoretical properties of the two concepts, but also
the consequences of using them. Therefore we start by comparing the implementa-
tion of a set of example rules in both concepts and the possible pitfalls.

4.1.1 Changing an Attribute Value

The first example is the change of an attribute value. Our main interest here is to
observe the application of rules and how they interact with attributes.

“A1”
50000
120

“A1”
50000
100

Figure 4.1: Changing an Attribute Value

33



Chapter 4 Comparison of Attribution Concepts

Figure 4.1 shows such a change, the value “120” in the graph on the left is changed
to “100” on the right.

4.1.2 Removing an Attribute

For our second example we remove an attribute entirely, as shown in figure 4.2. We
could instead add a new attribute, with broadly similar results.

“A1”
50000
120

“A1”
120

Figure 4.2: Removing an Attribute

4.2 Ehrig-Attributed Graphs

In this section, we attempt to translate the above examples into Ehrig-attributed
graphs and rules.

4.2.1 Changing an Attribute Value

Figure 4.3 shows the example rule as implemented in Ehrig-attributed graphs, both
in the simplified notation and in full.

Changing an attribute value in Ehrig-attributed graphs means removing an attribu-
tion edge and creating another. Note that the attribute nodes 120 and 100
in Figure 4.3 are not removed or added but are implicitly part of all of the graphs of
that rule. Additionally, while the figure shows three distinct type graphs, these are
only included for readability. The three graphs actually share a single type graph.

Attributes are multisets One side-effect of using edges to implement attribution
is the nature of the resulting attributes. These attributes do not always have a single
value, but can instead have several different values, no value or even multiples of
the same value.
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4.2 Ehrig-Attributed Graphs

n1:City n2:City

e1:Road
speed limit=120

n1:City n2:City
e1:Road

n1:City n2:City

e1:Road
speed limit=100

n1 n2e1

120

City Road nat
speedlimit

n1 n2e1

City Road nat
speedlimit

n1 n2e1

100

City Road nat
speedlimit

≡

Figure 4.3: Changing an Attribute Value with Ehrig-Attributed Graphs
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4.2.2 Removing an Attribute

While this is possible with Ehrig-attributed graphs it is necessary to replace the
node with an entirely new one. Since all of the graphs that are part of a rule in
Ehrig-attributed graphs share a single type graph and the morphisms that make up
the type graph must commute with the typing morphism it is impossible to change
the type of a node with a rule. As it is impossible to change that type of a node or
edge, adding or removing attributes entirely is also impossible.

4.3 Plump-Attributed Graphs

In this section, we attempt to translate the examples from section 4.1 into Plump-
attributed rules and rule schemata.

4.3.1 Changing an Attribute Value

Figure 4.4 shows an implementation of the first example rule in Plump-attributed
graphs. Note that the figure does not show a rule, but a rule schema instead.

n_t_s n_t_s-20

Figure 4.4: Changing an Attribute Value with Plump-Attributed Graphs

Attributes are encoded in labels Plump-attributed graphs are partially labeled
graphs with a label alphabet derived from the desired types for attributes. It is not
possible to match against a node with only one out of several attributes specified as
the whole label is used for finding a match. A rule or rule schema must therefore
always contain all attributes of a node or edge.
Remark
GP2 [Plu11] eases this restriction a little by allowing lists of arbitrary length in a
schema.

The example above uses a schema to work around this limitation by including vari-
ables in both the left-hand side and the right-hand side of the schema that do not
change for all attributes except the attribute we want to change.
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4.3 Plump-Attributed Graphs

4.3.2 Removing an Attribute

Plump-attributed graphs allow the removal or addition of attributes, as shown in
figure 4.5. A rule that changes attribute values always removes all attributes before
adding them back (possibly with different values). If an attribute should be removed
it is simply not added back to the label when applying the rule.

n_t_s n_s

Figure 4.5: Removing an Attribute with Plump-Attributed Graphs

Consequences of attribute addition or removal Since a rule always matches
against all attributes of a node or edge, addition or removal of attributes prevents or
enables the application of other rules. Rules can thus have effects on the applicability
of other rules, even if they operate on disjoint sets of attributes.

Other rules may later add an attribute that will occupy the same “place” in the
sequence. This might re-enable the application of rules without providing suitable
values for those rules.
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Chapter 4 Comparison of Attribution Concepts

4.4 Transformations between Ehrig- and
Plump-Attributed Graphs

Now that the consequences of using either Ehrig- or Plump-attributed graphs have
been explored, we investigate if both concepts are equally powerful. In particular
we attempt transformations between both concepts.

It is easy to see that Ehrig-attributed graphs, where the attributes are inherently
multisets can not always be represented by Plump-attributed graphs. On the other
hand Ehrig-attributed graphs do not support some of the flow control mechanism in-
troduced with GP. We therefore restrict Ehrig-attributed graphs and do not consider
conditional schemata.
Assumption 4.1
We restrict Ehrig-attributed graphs as follows:

• Σ is restricted to the standard algebra.

• The multiset-nature of attributes is not used, instead we assume a single value
per attribute.

• Attributes have at least one value; but waive this requirement for rule inter-
faces.

Additionally, we will not consider conditional schemata for Plump-attributed graphs,
although a transformation of these conditions into nested conditions [HP09] might be
possible if these conditions are expanded to allow constraints over attribute values.

These assumptions allow a single attribute in an Ehrig-attributed graph to be rep-
resented by a single attribute in a Plump-attributed graph.

The assumptions described above are manageable in many cases and a behavior
where a single attribute represents a single value is indeed the more intuitive one.
If sets or multisets are required, they can still be included in the algebra used by
either concept.

Formal definitions of the restriction follow:

Definition 4.1 (Restriction to Single-Value Attributes)
A Typed Attributed Graph is said to be restricted to single-value attributes if, for
every node v ∈ VG and every edge e ∈ EG there is at most one edge ea ∈ ENA∪EEA
for each edge et between t(v) (t(e)) and a node at ∈ VD in the type graph.
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Definition 4.2 (Restriction to Nonempty Attributes)
A Typed Attributed Graph is said to be restricted to nonempty attributes if, for
every node v ∈ VG and every edge e ∈ EG there is at least one edge ea ∈ ENA ∪EEA
for each edge et between t(v) (t(e)) and a node at ∈ VD in the type graph.

Rules for graphs with single-value, nonempty attributes need to be restricted as
well, if we want the results of rule applications to stay restricted in the same way.
The left- and right-hand side of a rule need both restrictions, while the interface is
restricted only to single-value attributes.

The biggest obstacle for a transformation is the type graph in Ehrig-attributed
graphs. If we transform an Ehrig-attributed graph along with a set of rules, these
rules should still be bound to the restrictions that typing enforces in Ehrig-attributed
graphs. Conversely a Plump-attributed graph that is transformed will have to be
typed, since typing for attributes cannot be done without introducing types for the
nodes and edges.

To enable a smooth transformation between both types of graphs we will first trans-
form Plump-attributed graphs by introducing a type name (as a string) as their first
attribute for every node and edge. These type names will be generated based on
the number and types of attributed present in Plump-attributed graphs and based
on the type names in the type graph in Ehrig-attributed graphs.
Definition 4.3 (Quasi-Typed Plump-Attributed Graphs)
A Plump-attributed graph Gp is quasi-typed if, for every two sequences of attribute
types ts and t′s′ in its nodes (edges), with t, t′ ∈ S and s, s′ ∈ (Z∪S)∗, s 6= s′ implies
t 6= t′.
Lemma 4.1
There is a quasi-typed Plump-attributed graph Gp,t for every Plump-attributed graph
Gp.

Construction 4.1
A Plump-attributed graph Gp is transformed into a quasi-typed Plump-attributed
graph Gp,t as follows: For every distinct sequence of attribute types s a name t is
generated. This name is prepended to the sequence of attributes of all nodes (edges)
with matching attribute types.
Proof
By inspection of construction 4.1. �

Remark
The problems described in section 4.3.2 can be solved in a quasi-typed Plump-attri-
buted graph, as different node or edge types can be defined for nodes or edges that
have otherwise identical attributes.
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c1:City
name=“Generica”

c2:City
name=“Metropolis”

r1:Road
speed_limit=120

“City”_“Generica” “City”_“Metropolis”
“Road”_120

Figure 4.6: Example of the Transformation from Ehrig- to Plump-Attributed Graphs

With these restrictions established, we can now introduce our transformations.
Construction 4.2 (From Ehrig- to Plump-Attributed Graphs)
Given an Ehrig-attributed graph Ge that is restricted to nonempty, single-value at-
tributes, the transformation θ transforms Ge into a quasi-typed Plump-attributed
graph Gp as follows:

For every item x ∈ Ge in the Ehrig-attributed graph:

(a) Create a node (an edge) in the Plump-attributed graph with the name of the
type of x – as a string – as the node’s (edge’s) first attribute.

(b) Add the attributes of x in lexicographical order to the sequence of attributes in
the new node (edge).

To transform a rule, convert all its constituent parts individually as above.

An example of this transformation is shown in figure 4.6. Note that the attribute
names, such as “speed_limit”, are lost during the transformation.
Construction 4.3 (From Plump- to Ehrig-Attributed Graphs)
Given a quasi-typed Plump-attributed graph Gp, the transformation ι transforms Gp

into an Ehrig-attributed graph Ge by first creating a type graph (Step 1) followed by
creating a graph and a typing morphism (Step 2) as follows:

If more than a single graph is transformed, we need to generate a single type graph
for all of these graphs first. Afterwards, we can create the transformed graphs and
their typing morphisms over this shared type graph.

Step 1: Creation of the type graph.

To create the type graph, we will look at the nodes and edges both of the graph and
of the rules that operate on this graph.
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4.4 Transformations between Ehrig- and Plump-Attributed Graphs

(a) Create attribute nodes for the types Nat and String .

(b) For each distinct string that is the first attribute of a node (edge):

(1) Create a node (edge) with this name in the type graph.

(2) Add attribution edges to the attribute types Nat and String based
on the attribute types present in the sequence of attributes for that node
(edge). Name these edges after the attribute’s position in the sequence,
i.e. “1” for the first attribute, “2” for the second.

Step 2: Creation of the graph and typing morphism

(c) Create attribute nodes for every possible value of Nat and String .

(d) These attribute nodes are mapped to their respective types by the typing mor-
phism.

(e) For every node (edge) in the Plump-attributed graph:

(1) Create a node (edge) in the Ehrig-attributed graph.

(2) The new node (edge) is mapped to a node (edge) according to the type
name that is its first attribute.

(3) For all other attributes, create an attribution edge from the newly created
node (edge) to the attribute node of the attributes value.

(4) The attribution edges from Step (3) above are mapped to attribution edges
in the type graph according to their position in the sequence.

Conversion of rule schemata:

A rule schema can not generally be represented by a single rule over Ehrig-attributed
graphs. We therefore convert all instances of a rule schema instead, which can lead
to an infinite set of rules. If a finite representation is desired, extensions to Ehrig-
attributed graphs, like symbolic attributed graphs [Ore11] could be used.

Rules that change the type of a node or edge:

Rules for Ehrig-attributed graphs do not support changing the type of a node or edge.
To be able to convert rules for Plump-attributed graphs that do change a type we need
to generate a (potentially infinite) set of rules that replaces the node or edge with
one of a different type in an arbitrary context.
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“Name”_10 105 nt1 nt2et1

string nat
1

2
1

1

5

10

“Name”

1:nt1
1 = “Name”

2 = 10

1:nt2
1 = 10

1:et1
1 = 5

Step 1:

Step 2:

≡

Figure 4.7: Example Transformation from Plump- to Ehrig-Attributed Graph

In the following proofs we use for example (Step ι.e.1) to refer to “(1) Create a node
(edge) in the Ehrig-attributed graph.” in the definition above.

Figure 4.7 shows an example of this transformation. In the first step the type graph
on the upper right is constructed, in step 2 the graph below is added and identified
with its types via the typing morphism. Finally, the Ehrig-attributed graph is shown
in its simplified notation in the lower right.

Lemma 4.2
The transformations θ and ι result in Plump-attributed and Ehrig-attributed graphs
respectively.

Proof
The different steps of θ and ι only create valid elements for the resulting graphs, as
can be easily seen from the transformations. �
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Ideally we would want ι(θ(Ge)) = Ge and θ(ι(Gp)) = Gp to hold. That is we would
want the application of both transformations to result in the graph we started with.
This is not the case for two reasons:

(1) The type graph for ι(θ(Ge)) is potentially smaller than the type graph for Ge,
since unused types will not be recreated by ι.

(2) The names of attributes in ι(θ(Ge)) and Ge differ.

We do however retain the number and types of attributes in the type graph. To
express this relationship we introduce a notion of weak isomorphism for Typed
Attributed Graphs over different type graphs.
Definition 4.4 (Weak Isomorphism for Typed Attributed Graphs)
Two Typed Attributed Graphs G = (AG, tG) over ATG and H = (AH , tH) over
ATH are called weakly isomorphic if:

(1) The type graphs ATG = (TG, Z) and ATH = (TH , Z) share a common algebra
Z,

(2) AG and AH are isomorphic,

(3) TG− and TH− are isomorphic, where for TG, TG− is the subgraph of TG
constructed by restricting TG to the range of tG. The restrictions induce two
inclusions iG : TG− → TG and iH : TH− → TH,

such that (1), (2) and (3) in the following diagram commute:

AG AH

TG− TH−

TG TH

(1)
(2) (3)

∼=

∼=

tG tH

iG iH

tG tH

We write G ∼=ω H.
Remark
Every two isomorphic Ehrig-attributed graphs are weakly isomorphic, since there is
an isomorphism from the attributed graph to itself and a trivial isomorphism from
the attributed type graph to itself.

The reverse is not true, since an isomorphism requires that both attributed graphs
share a single type graph.
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Remark
∼=ω defines an equivalence relation. It is trivially reflexive, for symmetry and tran-
sitivity consult the following two diagrams:

AG AH AG

TG− TH− TG−

TG TH TG

∼=

∼=

∼=

∼=

tG tH tG

iG iH iH

tG tH tG

AG AH AI

TG− TH− TI−

TG TH TI

∼=

∼=

∼=

∼=

tG tH tI

iG iH iI

tG tH tI

We write G�∼=ω
for the equivalence class of G induced by ∼=ω.

With weak isomorphisms for Ehrig-attributed graphs we can formally describe the
relationship between the original graph and result of the application of both trans-
formations:
Lemma 4.3 (Round Trip)
Using both transformations on a graph results in a weakly isomorphic or equivalent
graph, specifically:

1. For any Ehrig-attributed graph Ge that is restricted to nonempty, single-value
attributes, ι(θ(Ge)) ∼=ω Ge holds.

2. For any quasi-typed Plump-attributed graph Gp, θ(ι(Gp)) = Gp holds.

Ge�∼=ω

Gp

θ ι

Gp

Ge

θι
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Proof (Round Trip for Ehrig-Attributed Graphs)
Given an Ehrig-attributed graph Ge = (AG, t) over ATG = (TG, Z) that is restricted
to nonempty, single-value attributes, ι(θ(Ge)) results in a graph G′e = (AG ′, t′) over
ATG ′ = (TG ′, Z) with the standard algebra Z:

(1) Common algebra:
The condition trivially holds, since we restricted our Ehrig-attributed graphs to a
fixed algebra and the transformation ι uses that same algebra when constructing a
new type graph.

(2) Existence of an isomorphism i : TG− ↔ TG ′:

• Every node nt,e ∈ Ran(t) results in a node np ∈ Gp with the type name as its
first attribute (Step θ.a) and a sequence of attributes ordered by name (Step
θ.b).

• The transformation of the node np ∈ Gp results in a new node n′t,e ∈ ATG ′
(Step ι.b.1), that has attribution edges to the same types as the original node
nt,e ∈ ATG (Step ι.b.2).

Mapping each node n′t,e to the original nt,e and doing the same for edges and attri-
bution nodes and edges results in an isomorphism i : TG− ↔ TG ′, where TG− is
the restriction of TG to Ran(t) with the inclusion iG : TG− → TG. The inclusion
iG′ is simply idG′.

(3) Existence of an isomorphism m : AG↔ AG′:
Step θ.c creates a node np ∈ Gp for every node ne ∈ AG. Step ι.e.1 in turn creates a
node n′e ∈ AG′ for every node np ∈ Gp. The attribution edges, which do not survive
the transformation θ (Step θ.b), are recreated by ι (Step ι.e.3).

Mapping the nodes ne ∈ AG to n′e ∈ AG ′ and doing the same for edges and attribu-
tion nodes and edges, results in an isomorphism m : AG ↔ AG ′.

(4) Diagrams (1), (2) and (3) commute:

(2) and (3) commute by construction, for (1) consider the following:

m maps every node (edge) to its transformed counterpart.
t′ maps m(o) to its type.
i maps these types to their original counterparts (as can be seen in

(2) above).

�
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Chapter 4 Comparison of Attribution Concepts

Proof (Round Trip for Plump-Attributed Graphs)
Given a quasi-typed Plump-attributed graph Ge, θ(ι(Gp)) results in a graph G′p:

1. Nodes and Edges:

• Every node np ∈ Gp causes a node ne ∈ Ge to be created (Step ι.e.1). This
node is mapped to a node in ATG (Step ι.e.2), which is named with the first
attribute of np (Step ι.b.1).

• Step θ.b.2 transforms ne into a node n′p ∈ G′p with the name of t(ne) as its first
attribute.

2. Attributes:

• The attributes of a node np ∈ Gp are transformed into a set of attribution
edges originating at ne (Step ι.e.3) which are mapped to an attribution edge in
ATG which is named according to the attributes position in the sequence in np
(Step ι.e.4).

• The values these edges point to are added as the attributes of n′p ∈ G′p according
to the name of the edge (Step θ.b.2).

Thus, every element of the original graph Gp is recreated in G′p and no additional
elements are created. �

We would further want that the application of rules in one concept can be matched
by the application of a converted rule in the other concept. Such that for every Ehrig-
attributed graph that is restricted to nonempty, single-value attributes, there is a
quasi-typed Plump-attributed graph such that for all rules applicable in the Ehrig-
attributed graph there is a corresponding transformed rule that can be applied to the
Plump-attributed graph. The same relationship holds in the opposite direction.

To be able to track an item of one graph through the application of a rule we use a
track morphism as defined below:

Definition 4.5 (Track Morphism [Plu99])
Given a derivation G ⇒r H, the track morphism tr(r) : G → H is the partial
morphism defined by

tr(r) =

d(c−1(x)) if x ∈ c(D)
⊥ otherwise

Here c : D → G and d : D → H are the morphisms in the lower row of a derivation.
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Using these track morphisms, we can formalise our requirements regarding trans-
formed rules:
Theorem 4.4 (Mutual Simulation)
Using the transformations θ and ι as defined earlier:

1. From Ehrig- to Plump-attributed (left diagram)
For every rule re and derivation Ge ⇒re G

′
e exists a transformed rule rp =

θ(re), such that rp applied to the graph Gp = θ(Ge) yields a graph G′p, such
that ι(G′p) ∼=ω G

′
e.

2. From Plump- to Ehrig-attributed (right diagram)
For every rule rp and derivation Gp ⇒rp G

′
p exists a transformed rule re =

ι(rp), such that re applied to the graph Ge = ι(Gp) yields a graph G′e, such that
θ(G′e) = G′p.

Ge

Gp

G′e

G′p

∼=ωθ ι

tr(re)

tr(rp)

Ge

Gp

G′e

G′p

=ι θ

tr(re)

tr(rp)

Proof (Mutual Simulation)
1. From Ehrig- to Plump-attributed graphs:

Given a derivation Ge ⇒re G
′
e:

(1) rp = θ(re) has a match mp in Gp = θ(Ge) that does not violate the dangling
condition:

• Every element of the match me is transformed into a corresponding element
in Gp, these elements form a match mp for rp.

• mp does not violate the dangling condition if me doesn’t since θ creates no
additional edges.

If there is a match mp the existence of a derivation Gp ⇒rp G
′
p follows.

(2) ι(G′p) ∼=ω G
′
e:

• All elements of Ge that are not in me are unchanged in G′e, for all those
elements lemma 4.3 holds.

47



Chapter 4 Comparison of Attribution Concepts

• The remaining elements of G′e are the right-hand side of re, with lemma 4.3,
re ∼=ω ι(rp) holds.

2. From Plump- to Ehrig-attributed graphs:

Given a derivation Gp ⇒rp G
′
p:

(1) re = ι(rp) has a match me in Ge = ι(Gp) that does not violate the dangling
condition:

• Every element of the match mp is transformed into a corresponding element
in Ge, these elements form a match me for re.

• me does not violate the dangling condition since ι does not introduce additional
edges and the rule always references all attribution edges.

If there is a match me the existence of a derivation Ge ⇒re G
′
e follows.

(2) θ(G′e) = G′p:

• All elements of Gp that are not in mp are unchanged in G′p, for all those
elements lemma 4.3 holds.

• The remaining elements of G′p are the right-hand side of rp, with lemma 4.3
rp = θ(re) holds. �

We can therefore simulate the application of rules in Ehrig-attributed graph that are
restricted to single-value, nonempty attributes using quasi-typed Plump-attributed
graphs. Thus either concepts allows us to express similar classes of attributed
graphs.

48



4.5 Analysis

4.5 Analysis

We have compared Ehrig-attributed and Plump-attributed graphs, both with respect
to issues that can arise when using these concepts, as well as investigating their
compatibility by introducing transformations between subsets of them.

The concept of Ehrig et al. allows named attributes and allows specifying only a
part of the attributes that a node or edge has for the purpose of finding a match.
The graph must be typed, however, which means the attributes of a certain node or
edge are fixed and adding or removing attributes is impossible in a rule. Because
the values of attributes are determined by the presence or absence of edges, an
attribute in typed attributed graphs behaves like a multiset. It can have no value at
all, a single value or multiple values, even multiples of the same value. Intuitively
we would expect an attribute to have only one value, unless it is specifically meant
to be a multiset. Lastly, typed attributed graphs require changes to the definition
of graphs that add a lot of complexity. Most of that complexity is hidden by the
simplified notation that is introduced with typed attributed graphs, hiding these
additional elements can make their behavior all the more baffling though.

The concept of Plump allows attributes with different types and enables this with
only few additions to (partially) labelled graphs in the form of rule schema. The
labels of nodes and edges are only decomposed into attributes after finding a match,
which makes it impossible to specify only a part of the attributes of a node or edge.
GP allows adding or removing attributes, doing so can lead to ambiguity since the
attributes have no names, only positions in a sequence. Removing an attribute can
therefore lead to its successor being used in a rule schema.

The properties of both concepts are summarized in table 4.1 below.

For both concepts there are cases where one is the better choice. Typed attributed
graphs are typed and are better suited to applications where adding or removing at-
tributes would be counterproductive. GP was introduced to express algorithms over
graphs in a graphical way. In many of these algorithms the ability to add or remove
attributes is helpful and sometimes necessary for holding temporary values.

Some of the undesirable properties described above can be mitigated. Empty at-
tributed or multiple values in typed attributed graphs can be avoided by restricting
the number of attribution edges per node or edge both in the graph and in the
rules that operate on it. The ambiguity that can arise in GP can be avoided by
prepending a string to the attributes, as described in definition 4.3, with somewhat
similar results to typing.
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Chapter 4 Comparison of Attribution Concepts

Ehrig et al. [EEPT06] Plump [Plu09]
+ Named attributes – No way to refer to only one at-

tribute out of several
– Attributes are multisets – Possible ambiguity when at-

tributes are removed/added
– Graph and attributes must be

typed
+ Types for attributes

– Fixed attributes per node due to
typing

+ Ability to add/remove attributes

– Changes definition of graph &
morphism

+ Uses (partially) labelled graphs
with relabelling

++ M-adhesive + M,N -adhesive

Table 4.1: Comparison of the Concepts

We have also shown that Ehrig-attributed graphs and Plump-attributed graphs with
these restrictions can be transformed into each other. The restrictions to Ehrig-
attributed graphs result in a proper subset while quasi-typing the Plump-attributed
graph is always possible. This relationship is illustrated in figure 4.8

Ehrig-attributed Graphs

nonempty,
single-value
attributes

quasi-typed

Plump-attributed Graphs

θ

ι

Figure 4.8: Relationship between Ehrig-Attributed and Plump-Attributed Graphs

Beside the aspects investigated earlier in this chapter, we look at the theory devel-
oped for both concepts.

There is a well-developed theory for typed attributed graphs in the form of M-
adhesive categories [EGH10, EGH+12, EGH+13].

The category of partially labelled graphs with relabelling, that is used as the basis
for attribution in GP, is M,N -adhesive [HP12]. M,N -adhesive categories are a
restriction ofM-adhesive categories, with fewer results published.
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5 New Attribution Concept

In this chapter, we introduce a new concept for attribution in graph transformation.
We start with the requirements we have for such a concept. We continue with the
definition of a suitable category of collections of attributes, attach such attributes to
graphs and prove that the resulting category has direct derivations that are unique
up to isomorphism.

5.1 Requirements

The following requirements are derived from the comparison in chapter 4. We list
the properties we require of an attribution concept followed by a short explanation
why these properties are desirable.

• Single-value attributes
As discussed in chapter 1 attributes with multiple values - or even multiples
of the same value - are not the intuitively expected behavior.

• Nonempty attributes
Similarly, attributes that have no value at all can lead to unexpected behavior.

• Ability to add/remove attributes
For many algorithms on graphs, typing the graph is unnecessary and might
even be overly restrictive. Additionally we would like to simulate the graphs
used in GP.

• Ability to restrict addition/removal of attributes
In other cases, for example UML diagrams, it is necessary to restrict or prohibit
the addition or removal of attributes. Additionally we would like to simulate
Typed Attributed Graphs.

• Named attributes
Since we want several attributes per node or edge we need some way to dis-
tinguish between these attributes. In graphs as used in GP this is done by
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Chapter 5 New Attribution Concept

position in a sequence, this can, however, lead to ambiguity, as seen in section
4.3.

• Types for attributes
In order to enable computation over attribute values, types should be spec-
ified. Typed Attributed Graphs allow the specification of different types for
attributes. These types are bound to typing for the nodes and edges of a
graph however. Since we want typing for the graph to be optional, we have to
provide an alternative for specifying attribute types.

• Ability to re-use existing results for graph transformation
Ideally all of the above requirements should not prevent our concept from
using existing results form the literature.

5.2 General Idea

In Typed Attributed Graphs attributes behave like multisets since attribute values
are nodes and there can be any number of edges between nodes. In contrast, the
labels in graphs used in GP have very little structure to them, they are just a
sequence of attributes. These graphs otherwise have many of the properties we
want to have for attributes.

We therefore generalize (partially) labelled graphs with relabelling by allowing more
complex labels.

L CL

GraphsPLG GraphsCL

labels labels

generalize

generalize

Figure 5.1: Visualization of the General Idea

To achieve this we first focus on the labels and construct an appropriate category,
the objects of which are all the attributes of a node or edge. Afterwards we con-
sider graphs labelled with these objects and construct a category GraphsCL of such
graphs.
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5.3 Attribute Collections

We start by constructing a category of collections of attributes and show that this
category has pullbacks, pushouts, pushout-complements and finally direct deriva-
tions. These collections of attributes should satisfy as many of the above require-
ments as possible.

Such an attribute collection consists of a set of names, that are mapped to types and
values. We require a name to always have a type and further require that values
mapped to a name are of this type.

Definition 5.1 (Attribute Collection)
Let Σ be an algebra and T its sorts (called types in the following) and V = (Vt)t∈T a
family of values for the types. An attribute collection is a system A = (NA, tA, vA)
over Σ and a set N of possible attribute names, where NA ⊂ N is a finite set of
attribute names, tA : N → T is a total function that assigns types to names and
vA : NA × T → VT is a partial function that maps a pair of a name and a type to a
value.

Additionally, the following conditions hold:

(1) ∀(n, t) ∈ Dom(vA) : tA(n) = t, i.e. typing is correct for names.

(2) ∀v ∈ Ran(vA) with vA(n, t) = v : v ∈ Vt, i.e. typing is correct for values.

An attribute collection is complete if ∀n ∈ NA∃t ∈ T : (n, t) ∈ Dom(vA).

These attribute collections already satisfy some of our requirements. Each attribute
has a name, a type and can have at most one value. Most of the other requirements
only become relevant once we have a way of applying rules to attribute collections.

Example 5.1
We create an attribute collection from a node from the city example from section
3.1. NA = {name, population}, tA = {name 7→ String, population 7→ Nat},
vA = {(name, String) 7→ ”Generica”, (population,Nat) 7→ 100000}. The exam-
ple is shown in figure 5.2.

name = ”Generica”
population = 100000

Figure 5.2: An Example of an Attribute Collection
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Chapter 5 New Attribution Concept

To form a category of these attribute collections we need morphisms for them. While
the morphisms should preserve the structure of an attribute collection, it is useful
to allow morphisms to not preserve values. This can later be used to realize typing
in a similar way to typed graphs.

Definition 5.2 (AC-Morphism)
A AC-morphism a : A→ B from an attribute collection A to an attribute collection
B is a function aN : NA → NB such that diagram (1) commutes:

NA NBT
× ×
T T

VT

aN

tA tB

vA vB

(1)

(2)

The AC-morphism:

preserves values if diagram (2) commutes.

preserves undefinedness if vA(n, t) = ⊥ implies vB(aN(n), t) = ⊥.

An AC-morphism a is injective (surjective) if aN is injective (surjective) and an iso-
morphism if it is injective, surjective and preserves undefinedness. An AC-morphism
a an inclusion if aN(n) = n for all n ∈ NA.

Fact 5.1
Attribute collections and AC-morphisms constitute a category AC, where composition
of morphisms is function composition.

In the following we show the existence of pullbacks, pushouts and direct derivations
that preserve values for the category AC of attribute collections. For the existence of
pullbacks, pushouts and direct derivation that do not preserve values we can simply
refer to the proofs for totally labelled graphs (without relabelling) as presented in
[Ehr79]. It is easy to see the parallels: an attribute collection, where names are
mapped to types, is very similar to a simple graph, where nodes are mapped to
labels. For the attribute values the situation is somewhat similar. In this case the
proofs are close to those for partially labelled graphs with relabelling [HP02]. We
provide full proofs for the value preserving concepts, since we do not require all of
the properties of partially labelled graphs, allowing us to simplify the proofs.
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5.3 Attribute Collections

We start with pullbacks, which we will need to define natural pushouts later.

Lemma 5.2 (Existence of Pullbacks)
Given AC-morphisms b : B → C and d : D → C that preserve values, there exists
an attribute collection A and AC-morphisms a : A → B, c : A → D such that the
diagram below is a pullback:

B A

C D

(1)

a

b

d

c

E

c′

a′
u

Proof
(1) Construct A:

The names of A are constructed as {〈n,m〉 ∈ NB × ND|b(n) = d(m)}, the typing
function as tA(〈n,m〉) = tB(n) = tD(n) and the value function is defined as

vA(〈n,m〉, t) =

vB(n, t) if vB(n, t) = vD(m, t) 6= ⊥
⊥ otherwise

Note that tA(〈n,m〉) is well defined, since tB and tD are total functions and b, d
preserve types.

A satisfies the conditions for attribute collections:

(1) ∀(n, t) ∈ Dom(vA) : tA(n) = t:
If (n, t) ∈ Dom(vA) then there is a (n, t) ∈ Dom(vB) for which (1) holds, then
by construction of tA, tA(n) = t.

(2) ∀v ∈ Ran(vA) with vA(n, t) = v and v ∈ Vt:
If v ∈ Ran(vA) then there is a v′ ∈ Ran(vB) for which (2) holds, then by
definition of vA, v = v′ and (2) holds for vA.

(2) Construct AC-morphisms a,c:

Let a : A → B and c : A → D be the projections from NB × ND to NB and ND

respectively, that is, a(〈n,m〉) = n) and c(〈n,m〉) = m.

For the preservation of types (i.e. a, c are actually morphisms), refer to the proofs
for totally labelled graph without relabelling [Ehr79] as outlined above.
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To show that a,c preserve values, consider (〈n,m)〉, t) ∈ Dom(vA).
Then vB(a(〈n,m〉, t)) = vB(n, t) = vA(〈n,m〉, t) and vB(c(〈n,m〉, t)) = vD(m, t) =
vB(m, t) = vA(〈n,m〉, t) by definition of a, c and vA and since (〈n,m〉, t) ∈ Dom(vA).

Hence a and c are AC-morphisms that preserve values.

(3) The square (1) commutes:

By construction in (1),(2).

(4) Universal property:

Let a′ : E → B and c′ : E → D be morphisms that preserve values with b◦a′ = d◦c′.
There is only one choice to define u : E → A such that a ◦ u = a′ and c ◦ u = u′:
u(n, t) = (〈a′(n), c′(n)〉, t) for all n ∈ NE.

It remains to show that u is an AC-morphism (i.e. u preserves values). To show that
u preserves values, let (n, t) ∈ Dom(vE).

If vB(a′(n), t) = vD(c′(n), t) 6= ⊥, we have vA(u(n), t) = vA(〈a′(n), c′(n)〉, t) =
vB(a′(n), t) = vE(n, t) by definition of u, vA and the fact that a′ preserves values.

If vB(a′(n), t) = ⊥ or vD(c′(n), t) = ⊥, then vA(u(n), t) = vA(〈a′(n), c′(n)〉, t) =
⊥ = vE(n, t) by definition of u, vA and the fact that a′ and c′ preserve values.

Thus u is a AC-morphism. �

Since our rules will consist of two pushouts, we define them next:

Lemma 5.3 (Existence of Pushouts)
Let a : A → B be an inclusion that preserves values and b : A → C be an AC-
morphism that preserves values, such that B is complete and for all (n, t), where
n ∈ NB and tB(n) = t, {vB(n, t)} ∪ vC(b(n), t) contains at most one element. Then
there exists an attribute collection D and AC-morphisms c : B → D, d : C → D,
such that the following diagram is a pushout:

A B

C D

(1)

a

b

d

c

E

c′

d′

u
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Proof
(1) Construct attribute collection D:

D = (ND, tD, vD), where ND = NC ∪NB tD(n) = tC(n) = tB(n) and

vD(n, t) =

vC(n, t) if n ∈ (NC \ b(NA))
vB(n, t) otherwise

Note that tD(n) is well-defined since tC, tB are total functions, and a, b preserve
types.

A satisfies the conditions for attribute collections:

(1) ∀(n, t) ∈ Dom(vD) : tD(n) = t:
If (n, t) ∈ Dom(vD) then there is a (n, t) ∈ Dom(vB) or (n, t) ∈ Dom(vC) for
which (1) holds, then by construction of tD, tD(n) = t.

(2) ∀v ∈ Ran(vD) with vD(n, t) = v and v ∈ Vt:
If v ∈ Ran(vD) then there is a v′ ∈ Ran(vB) or a v′ ∈ Ran(vC) for which (2)
holds, then by definition of vD, v = v′ and (2) holds for vD.

(2) Construct morphisms c, d:

Let c(n) = n and d(n) =

a(n′) if n = b(n′) for some n′ ∈ NA

n otherwise
.

For the preservation of types (i.e. c, d are actually morphisms), refer to the proofs
for totally labelled graph without relabelling [Ehr79] as outlined above.

To show that c and d preserve values:

(c) Let (n, t) ∈ Dom(vB). Then vD(c(n), t) = vB(n, t) by definition of c, vD and since
whenever n /∈ (NC \ b(NA), n ∈ NB and therefore (n, t) ∈ Dom(vB) for t = tB(n),
so c is value-preserving.

(d) Let (n, t) ∈ Dom(vC).

• If n ∈ NC and tC(n) = t and n /∈ b(NA), then vD(d(n), t) = vC(n, t) by
definition of d and vD.

• If n ∈ b(NA), then n′ = b(n) for some n′ ∈ NA. Then vD(d(n), t) =
vB(a(n′), t) = vC(b(n′), t) = vC(n, t) by definition of vD, the fact that for all
(n, t), where n ∈ NB and tB(n) = t, {vB(n, t)} ∪ vC(b(n), t) contains at most
one element, the fact that b preserves values and the fact that (n, t) ∈ Dom(vC).
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Thus c, d are AC-morphisms that preserve values.

(3) The square (1) commutes:

By construction of (1),(2).

(4) Universal property:

Let c′ : B → E and d′ : C → E be morphisms that preserve values with d′ ◦b = c′ ◦a.
There is only one choice to define u : D → E such that u ◦ d = d′ and u ◦ c = c′:

u(n) =

c′(n) if n ∈ NB

d′(n) otherwise

It remains to show that u is a morphism (i.e. u preserves values). To show that u
preserves values, let (n, t) ∈ Dom(vD). We have two cases:

• (n, t), where n ∈ NB and tB(n) = t and vB(n, t) 6= ⊥. Then vE(u(n), t) =
vE(c′(n), t) = vB(n, t) = vD(n, t) by definition of u, the fact that c′ preserves
values and the fact that since whenever n /∈ (NC \b(NA), n ∈ NB and therefore
(n, t) ∈ Dom(vB) for t = tB(n), and the definition of vD.

• (n, t), where n ∈ NC and tC(n) = t and n ∈ b(NA). Then vE(u(n), t) =
vE(d′(n), t) = vC(n, t) = vD(n, t) by definition of u, the fact that d′ preserves
values and the definition of vD.

Thus u is a morphism. �

A pushout that is simultaneously pullback is called natural. We will use the natu-
ralness of pushouts later to prove that the results of our derivations are unique up
to isomorphism.
Lemma 5.4 (Characterisation of Natural Pushouts)
Given two morphisms a : A→ B and c : A→ D such that a is injective, the pushout
(1) below is natural (i.e. it is simultaneously a pullback) if and only if

for all (n, t), where n ∈ NA and tA(n) = t :
vA(n, t) = ⊥ implies vB(n, t) = ⊥ or vD(n, t) = ⊥

(∗)

B A

C D

(1)

a

b

d

c
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Proof
Let the diagram (1) be a natural pushout with morphisms b : B → C and d : D →
C. Since it is also a pullback, {〈n,m〉 ∈ NB × ND|b(n) = d(m)}, is an explicit
construction of NA up to isomorphism, where vA(〈n,m〉, t) = vB(n, t) if and only if
vB(n, t) = vD(m, t) 6= ⊥. It follows that vA(〈n,m〉, t) = ⊥ if and only if vB(n, t) = ⊥
or vD(m,u) = ⊥. Hence condition (∗) is satisfied.

Conversely let (1) be a pushout satisfying condition (∗). In the diagram below, let
(2) be a pullback of b : B → C and d : D → C, let a′ : E → B and c′ : E → D
be morphisms, by the universal property of (2) there exists a unique morphism u :
A→ E such that a′ ◦ u = a and c′ ◦ u = c.

B A

C D

(2)

a

b

d

cE

We show that u is an isomorphism. Injectivity follows from injectivity of a′ ◦ u = a.
To see that u is surjective, consider some (n′, t), where n ∈ NE and tE(n′) = t.
Then b(a′(n′), t) = d(c′(n′), t) by commutativity of (2). Hence, by injectivity of a
and the pushout characterisation of [EK79] (Theorem 1.2) applied to diagram (1)
there is some n ∈ NA such that a(n, t) = a′(n′, t) and c(n, t) = c′(n′, t). Applying
the pullback characterisation of [EK79] (Theorem 1.7) to (2) gives u(n, t) = (n′, t).
Finally u preserves undefinedness by condition (∗). Thus u is an isomorphism,
implying that diagram (1) is a pullback and hence a natural pushout. �

We want to prove the existence of a direct derivation given the existence of a match.
The match however, is not sufficient for building the first pushout. Instead we can
build the pushout-complement, for the existence of which we give a proof below.

Lemma 5.5 (Existence & Uniqueness of Natural Pushout-Complements)
Let b : B → C be an AC-morphism that preserves values and a : A→ B an inclusion
that preserves values and B be complete. Then there exists an attribute collection
D and morphisms c : A → D, d : D → C such that (1) in the diagram below is a
natural pushout:
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B A

C D

(1)

a

b

d

c

E

b′

d′

u

Moreover, in this case D is unique up to isomorphism.

Proof
(1) Construct attribute collection D:

D = (ND, tD, vD), where ND = NC \ (NB \NA),

tD(n) =

tA(n) if n ∈ NA

tC(n) otherwise

and

vD(n, t) =

vA(n′, t) if n = b(n′) for some n′ ∈ NA

vC(n, t) otherwise

D satisfies the conditions for attribute collections:

(1) ∀(n, t) ∈ Dom(vD) : tD(n) = t:
If (n, t) ∈ Dom(vD then n ∈ NA or n ∈ NC for which (1) holds, then by
construction of tD, tD(n) = t.

(2) ∀v ∈ Ran(vD) with vD(n, t) = v and v ∈ Vt:
If v ∈ Ran(vD) then there is a v′ ∈ Ran(vA) or v′ ∈ Ran(vC) for which (2)
holds, then by definition of vD, v′ = v and (2) holds for vD.

(2) Construct morphisms c, d:

Let d(n) = n and c(n) =

b(n) if b(n) ∈ ND

⊥ otherwise
.

For the preservation of types (i.e. c, d are actually morphisms), refer to the proofs
for totally labelled graph without relabelling [Ehr79] as outlined above.

To show that c and d preserve values:

(c) For (n, t) ∈ Dom(vA), we have vD(c(n), t) = vA(n, t), by the definition of c and
the definition of vD. Thus c preserves values.
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5.3 Attribute Collections

(d) For (n, t) ∈ Dom(vD) there are two cases:

• (n, t), where n ∈ NC and n /∈ b(NB) and tC(n) = t. Then vC(d(n), t) =
vC(n, t) = vD(n, t) by definition of d and vD.

• (n, t), where n ∈ b(NA) and tC(n) = t. Let n′ ∈ NA with b(n′) = n. Then
vC(d(n), t) = vC(n, t) = vC(b(n′), t) = vB(n′, t) = vA(n′, t) = vD(n, t) by
definition of d and the fact that b, a and c preserve values.

Hence, c, d are AC-morphisms that preserve values.

(3) The square (1) commutes:

By construction in (1),(2).

(4) Universal property:

Let b′ : B → E and d′ : D → E be morphisms that preserve values with b′ ◦a = d′ ◦c.
There is only one choice to define u : C → E such that u ◦ b = b′ and u ◦ d = d′:

u(n) =

d′(n) if n ∈ ND

b′(n) otherwise

It remains to show that u is a morphism (i.e. u preserves values). To show that u
preserves values, let (n, t) ∈ Dom(vC). We have two cases:

• (n, t), where n ∈ b(NB) and tC(n) = t and n′ ∈ NB with b(n′) = n. Then
vE(u(n), t)=vE(u(b(n′)), t) = vE(b′(n′), t) = vB(n′, t) = vC(b(n′), t) = vC(n, t)
by definition of u and the fact that b and b′ are value-preserving.

• (n, t), where n ∈ ND and n ∈ c(NA) and tD(n) = t. Then vE(u(n), t) =
vE(d′(n), t) = vD(n, t) = vC(n, t) by definition of u, the fact that d′ preserves
values and vD.

Thus u is a morphism that preserves values and the square (1) is a pushout.

Moreover, by definition of vD, property (∗) of lemma 5.4 holds: for all (n, t), where
n ∈ NA and tA(n) = t, vA(n, t) = ⊥ implies vB(n, t) = ⊥ or vD(c(n), t) = ⊥. Thus,
by lemma 5.4, diagram (1) is a natural pushout.

It remains to show that D is unique up to isomorphism, that is: its values are
uniquely determined. Consider any (n, t) ∈ Dom(vD). We have two cases:
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Chapter 5 New Attribution Concept

• (n, t) ∈ Dom(vC) and n /∈ b(First(Dom(vB))) 1. It can be shown that for every
pushout of form (1), for each (n, t) ∈ Dom(vC) there is (n′, t) ∈ Dom(vD) with
b(n′) = n and vB(n′, t) = vC(n, t) or there is (n′, t) ∈ Dom(vD) with d(n′) = n
and vD(n′, t) = vC(n, t). Since in the present case (n, t) /∈ Dom(vB) and d is
an inclusion, vD(n, t) must be equal to vC(n, t).

• (n, t), where n ∈ b(NA) and tC(n) = t. Let n′ be the unique element in NA

with b(n′) = n: If vA(n′, t) 6= ⊥, then vD(n, t) = vD(c(n′), t) = vA(n′, t) because
c preserves values. If vA(n′, t) = ⊥, then by the characterisation of natural
pushouts in lemma 5.4, vD(n, t) = vD(c(n′), t) = ⊥. �

Rules are defined analogously to rules for graphs. We require the two morphism of
which the rules consist to be inclusions, since we want to change attribute values
based on the names of attributes. In practice we will require the same of a match,
but this requirement is not necessary for the proofs. We additionally require the
left-hand side and the right-hand side of such a rule to be complete, i.e we require
all of their names to have a value. In this way we can satisfy our requirement for
nonempty attributes.

Definition 5.3 (AC-Rule)
An AC-rule r = 〈L ← K → R〉 consists of two inclusions K → L and K → R that
preserve values, where L,R are complete.

As can be seen in the following example, we also fulfill our requirement for the addi-
tion of attributes, since the morphisms are not required to be surjective. Removing
attribute values is also possible, as can easily be seen from the example by swapping
the left-hand side and the right-hand side.

Example 5.2
An example of an AC-rule is shown in figure 5.3. We add a new attribute growthLY
to the attribute collection from example 5.1 and change the value of population.

name = ”Generica”
population = 100000

name = ”Generica”
population =⊥

name = ”Generica”
population = 120000
growthLY = 20000

Figure 5.3: Example of an AC-Rule

1Where First selects the first element of Dom(vB)
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5.3 Attribute Collections

Given rules as defined above we prove the existence of derivations that preserve
values and are unique up to isomorphism.

Theorem 5.6 (Exist. & Uniq. of Value-Preserving AC-Derivations)
Given an AC-rule r = 〈L← K → R〉 and an AC-morphism a : L→ G that preserves
values there exists a value-preserving AC-derivation G⇒r H such as in the diagram
below.

L

G

K

D

R

H

a b

c

(1) (2)

Moreover D and H are unique up to isomorphism.

Example 5.3
An example of an AC-derivation is shown in figure 5.4. The rule on the upper row
is very similar to the rule from example 5.2. We could, in fact, use that rule instead
without any changes to the match or the result of the derivation.

population = 100000 population =⊥ population = 120000
growthLY = 20000

name = ”Generica”
population = 100000

name = ”Generica”
population =⊥

name = ”Generica”
population = 120000
growthLY = 20000

Figure 5.4: Example of an AC-Derivation

Proof
(1) Diagram (1) is a natural pushout:

By lemma 5.5 there exist an attribute collection D that is unique up to isomorphism
and AC-morphisms D → G and b : K → D that preserve values.

(2) For all (n, t), where n ∈ NR and tR(n) = t, {vR(n, t)}∪vD(b(c−1(n)), t) contains
at most one element:

vR(n, t) 6= ⊥, since R is complete. Then by the definition of a rule , vL(n′, t) 6= ⊥
with n′ ∈ c−1(n). Consider n′ ∈ c−1(n):
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Chapter 5 New Attribution Concept

• vK(n′, t) 6= ⊥. Then vD(b(n′), t) = vK(n′, t) = vR(c(n′), t) because b and c
preserve values.

• vK(n′, t) = ⊥. Then by the characterisation of natural pushouts in lemma 5.4,
vD(b(n′), t) = ⊥.

Hence elements in c−1(n) either have vR(n, t) as a value or have no value. Thus
{vR(n, t)} ∪ vD(b(c−1(n)), t) contains at most one value.

Hence (2) is a pushout by lemma 5.3.

(3) We show that (2) is a natural pushout:

Consider any pair (n, t), where n ∈ NK and tK(n) = t with vK(n, t) = ⊥ and
vR(c(n), t) 6= ⊥. Then vL(n, t) 6= ⊥ by the definition of a rule. Hence vD(b(n), t) =
⊥ by the naturalness of pushout (1) and lemma 5.4. By lemma 5.4, diagram (2) is
a natural pushout. Hence attribute collection H is unique up to isomorphism. �

This category AC of attribute collections satisfies many of our requirements specified
in section 5.1, but does not support attributing graphs.
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5.4 Graphs with Complex Labels

We need to attach the attribute collections to elements of a graph to enable attribu-
tion for graphs. To this end we introduce a more generic category of graphs labelled
with the objects of a category CL.
Definition 5.4 (Graphs with Complex Labels)
A graph with complex labels, or CL-graph, over a category CL, is a system CLG =
(G,L, l), where G is a graph, LG is a multiset of objects of the category CL, and
l = (lG,V , lG,E), with lG,V : V → L and lG,E : E → L are labelling functions that
attach elements of L to nodes and edges respectively.

EG VG

LG

sG

tG
lG,E lG,V

Remark
The labels LG are a multiset in a graph with complex labels to prevent the application
of a rule from changing the attributes of more than one node or edge unless that is
done explicitly.

The morphisms for this category are graph morphisms together with morphisms for
the individual labels.
Definition 5.5 (CL-Morphism)
A CL-morphism g : G → H from a CL-graph G to a CL-graph H consist of a graph
morphism gG together with a function gL : LG → LH that consists of a set of
morphisms in CL.

G LG
lG

H LH
lH

gG gL=

Lemma 5.7
CL-graphs and CL-morphisms form categories CLG(CL), where composition of mor-
phisms is componentwise composition of the morphisms of the underlying categories
of graphs and CL.
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Chapter 5 New Attribution Concept

In the same vein rules are composed of graph-rules and rules in the category CL.
Except for elements that are not in K, these elements are deleted or added along
with the graph elements to which they are attached.

Definition 5.6 (CL-Rules)
A CL-rule r = 〈L ← K → R〉 consists of two CL-morphisms K → L and K → R.
The components of aL, bL for an element of LK form a rule over the category CL.

L K R

lL lK lR

l l l

Remark
We assume that it is possible to construct the category of partially labelled graphs as
a special case of graphs with complex labels by constructing a suitable category L for
the labels:

• Objects of the category are elements of the label alphabet L and one element
to represent unlabelled nodes ε.

• Morphisms exists between equivalent elements of L or in the form ε → l for
some l ∈ L.

A rule over this category L of labels is a pair of morphisms K → L and K → R as
usual. For these rules there are direct derivations with a uniquely determined result.
Proofs for this would be analogous to the proofs presented in the previous section.
The resulting category CLG(L) would behave like the category GraphsPLG of partially
labelled graphs. The proof for the existence of derivations in CLG(L) would be similar
to those presented later in this chapter.
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5.5 Graphs with Attribute Collections

We use CL-graphs and the attribute collections defined previously to construct graphs
with items labelled with collections of attributes.
Definition 5.7 (Graphs with Attribute Collections)
Graphs with attribute collections, short AC-graphs, are the category CLG(AC) of CL-
graphs, where the category of labels CL is the category AC of attribute collections.

The definition of rules follows from the definition given in section 5.4.

Example 5.4
The city example from section 3.1 as a AC-graph is shown in figure 5.5.

name = ”Generica”
population = 100000

name = ”Metropolis”
population = 200000

name = ”A1”
traffic = 50000
speedlimit = 120

Figure 5.5: Example of an AC-Graph

We are able to show the existence and uniqueness of derivations in the category.

Theorem 5.8 (Existence & Uniqueness of AC-Graph Derivations)
Given a rule r = 〈L ← K → R〉 and a morphism g : L → G, over CLG(AC)
there exists a direct derivation as in the following diagram if and only if the graph
component of g satisfies the dangling condition.

L K R

G D H

g

Moreover D and H are unique up to isomorphism.

Proof
(G) For the graph component:

If the graph component gG of g satisfies the dangling condition there exists a unique
direct derivation in the underlying category of graphs.
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(A) For the attribute collections:

For each of the attribute collections in L that is also in K there exists a unique direct
derivation, since the components of gL in the match g are matches for rules in AC
and there is such a rule for each element in LK. Attribute collections that are in L
but not in K are deleted from LG when creating LD, conversely attribute collections
that are not in K but are in R are added to LH .

(l) This leaves the labelling functions l:

For attribute collections that are in both LL and LK no changes to the labelling
function are necessary, since the target of lK is transformed using the aforementioned
rule. The labelling function is extended to any new graph elements in R. �

Consequently, we have graph transformation that supports attribution. One of our
requirements has not been fulfilled however, we have no way to restrict the addition
or removal of attributes yet.
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5.6 Typed Graphs with Attribute Collections

We introduce typing for the attribute collections (and consequently the AC-graphs)
to satisfy this requirement.
Definition 5.8 (Typed Attribute Collection)
A typed attribute collection is a pair TA = (A, tA) over AT consisting of an attribute
collection A and a surjective typing morphism tA : TA→ AT.

Given typed attribute collections TA = (A, tA) and TB = (B, tB over AT, a typed
AC-morphism m : TA→ TB is an AC-morphism m : A→ B such that tA ◦m = tB.

TA TB

AT

m

tA tB
=

Rules for typed attribute collections are defined analogously to rules for attribute
collections.

We show an example of an AC-morphism that is not a typed AC-morphism in figure
5.6 below. If we assume that the attribute collection on the left is the interface of a
rule and the attribute collection on the right the right-hand side, the rule would add
an attribute. The AC-morphismm is not typed though, since tH is not a morphism.

If we instead assume that the two attribute collections are interface and left-hand
side respectively and the attribute collection below would include an attribute
population : Nat, this would be a rule for removing an attribute. In that case
however, tG would not be surjective, hence the AC-morphism m would not be a valid
typed AC-morphism.

name : String = ”Generica” name : String = ”Generica”
population : Nat = 100000

name : String

m

tG tH

Figure 5.6: AC-Morphism that is not a Typed AC-Morphism

Fact 5.9
Typed attribute collections and their morphisms form a category TAC, where compo-
sition of morphisms is componentwise function composition.
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Lemma 5.10 (Existence & Uniqueness of TAC-Derivations)
Given a rule r = 〈L ← K → R〉 and a typed AC-morphism g that preserves values
there exists a value-preserving TAC-derivation G ⇒r H. Moreover D and H are
unique up to isomorphism.

Proof
As can be seen from the examples above, rules over TAC are the subset of rules over
AC that do not add or remove attributes. The proofs in section 5.3 hold for this
subset. �

Remark
Some simplifications would be possible here, since each attribute is now typed twice.
We could instead construct attribute collections that only have values and assign the
sorts of the algebra as values in the type collection.

This construction of typed attribute collections can be lifted to graphs in the same
way as the untyped attribute collections.
Definition 5.9 (Typed Graphs with Complex Labels)
A typed graph with complex labels, or typed CL-graph, is a pair GT = (G, tG) over
TG, consisting of a graph with complex labels G and a CL-morphism tG : G→ TG.

Given typed graphs with complex labels GT = (G, tG and HT = (H, tH over TG,
a typed CL-morphism m : GT → HT is a CL-morphism m : G → H such that
tG ◦m = tH .

Definition 5.10 (Typed Graph with Attribute Collections)
Typed graphs with attribute collections, short TAC-graphs, are the category of typed
CL-graphs, where the category of labels CL is the category AC of attribute collections.

The definition of rules is analogous to the definition given in section 5.4.

Theorem 5.11 (Existence of TAC-Graph Derivations)
Given a rule r = 〈L ← K → R〉 and a morphism g : L → G, over TAC-graphs
there exists a direct derivation if and only if the graph component of g satisfies the
dangling condition. Moreover D and H are unique up to isomorphism.

Proof
Refer to the proof for untyped graphs with attribute collections in section 5.5 and
substitute typed graphs for graphs. �

We thus have an attribution concept for graph transformation that allows typing
but does not require it. It satisfies all but one of the requirements listed in the
beginning of this chapter: The ability to reuse existing theory. In the next chapter
we will consider the ability to reuse existing theory for this new concept.
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In this chapter we analyse the concept introduced in the previous chapter. We
start by investigating whether or not graphs with attribute collections belong to
the classes of eitherM-adhesive [EGH10] orM,N -adhesive [HP12] categories. We
conclude with a look at related work and compare graphs with attribute collections
to the concepts introduced in chapter 3.

6.1 GraphsAC is not M-Adhesive

For a category to be M-adhesive, it must have pushouts along a class M of mor-
phisms.

Theorem 6.1 (GraphsAC is not M-Adhesive)
The category GraphsAC together with AC-graph morphisms is notM-adhesive, where
M is the class of inclusions.

Proof
It is sufficient to give a counterexample for the category AC of attribute collections
alone, we give such a counterexample in figure 6.1 below. �

population =⊥ population = 120000

population = 100000 population =?

a

d

b c

Figure 6.1: AC is notM-Adhesive

The proofs in chapter 5 do not assume a single class of morphisms, specifically the
vertical morphisms must preserve undefinedness, as it is otherwise not possible to
obtain a pushout. If we do not choose morphisms that preserve undefinedness as
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the classM, we would have to find a value for population such that both c and d
above preserve values. On the other hand, the horizontal morphisms can not also
preserve undefinedness, since changing attribute values would then be impossible.

6.2 Is GraphsAC M,N -Adhesive?

Conversely it is very likely that both the category AC of attribute collections and
GraphsAC areM,N -adhesive [HP12].

Conjecture 6.2 (GraphsAC, AC are M, N -Adhesive)
The category AC of attribute collections and the category GraphsAC of graphs labelled
with these attribute collections are bothM,N -adhesive.

For AC, the class M would consist of all inclusions and N would consist of all
inclusions that preserve undefinedness. For GraphsAC, the same requirements would
apply to the attribute components of morphisms.

We believe the similarity between attribute collections and partially labelled graphs
as noted in chapter 5 makes it very likely that AC, and consequently also GraphsAC,
isM,N -adhesive.

ForM,N -adhesiveness, we would need to show the following:

• Closure properties: M and N are closed under composition and decomposi-
tion. N is closed underM-decomposition.

• The category has pushouts along M,N -morphisms. (This is already proven
in chapter 5.)

• The category has all pullbacks. (Proof in chapter 5.)

• M and N are stable underM,N -pushouts andM-pullbacks.

• Pushouts alongM,N -morphisms areM,N -van Kampen squares.

Given the similarities between the proofs in chapter 5 and those for partially labelled
graphs, the above mentioned proofs would likely be similar to the proofs in [HP12],
where partially labelled graphs are proven to beM,N -adhesive.

6.3 Related Work

In this section we compare AC-graphs with the concepts introduced in chapter 3.
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Typed Attributed Graphs Like Typed Attributed Graphs [EEPT06], AC-graphs
allow the attribution of both nodes and edges. Attributes are referred to by name
and have types and values determined by an algebraic specification. The attributes
of a Typed Attributed Graph are implicitly multisets, while the attributes of AC-
graphs can only have a single value. If sets or multisets are desired as an attribute
type, they have to be explicitly specified in the underlying algebra. While Typed
Attributed Graphs must have typed nodes and edges and the attributes of a node
or edge are therefore fixed, AC-graphs allows the use of either typed or untyped
graphs.

Graphs in GP Both the graphs used in GP [Plu09] and AC-graphs are closely
related to partially labelled graphs with relabelling. Both concepts specify attribute
types and values through an algebraic specification and both concepts allow the
attribution of an untyped graph while still retaining types for attribute values. While
a rule in GP must always reference all attributes of a node or edge, AC-graphs allow
matches even if only a subset of the attributes is specified in the left-hand side of a
rule. In both concepts attributes can be added to or removed from a node or edge.

The relationships of AC-graphs, Typed Attributed Graphs and the graphs used in
GP is illustrated in figure 6.2 below. The dashed edges represent a likely existence
of transformations between our new concept and the other two.

AC-Graphs

Typed Attributed Graphs

nonempty,
single-value
attributes

quasi-typed

Graphs in GP

θ

ι

Figure 6.2: AC-Graphs, Typed Attributed Graphs, and Graphs as Used in GP
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For the meaning of the transformations ι and θ, as well as nonempty, single-value
attributes and quasi-typing refer to section 4.4.

Graphs as Special Algebras The attribution concept in [LKW93] is quite distant
from the concept we presented in chapter 5. Due to this tenuous connection, we
have not evaluated similarities between the concepts further.

W-adhesive Transformation Systems There are some similarities between theW-
adhesive categories defined in [Gol12] and the complex labelled graphs in chapter 5.
In both cases types of attributes and their values are determined by the sorts of an
algebra and its base sets respectively. The approaches differ in the way attributes are
attached to the items of a graph. InW-adhesive categories attributes are mapped to
items of a graph individually, according to an attribution type. In complex labelled
graphs the attributes of an item form a single object, which is then attached to
the item. Due to being determined by the attribution type, attributes can not be
added to or removed from an item in W-adhesive categories. On the other hand,
W-adhesive categories are defined over an arbitrary M-adhesive category and can
therefore be used to attribute other structures besides graphs.
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7 Conclusion and Future Work

Attribution is important for many modeling problems that are otherwise well suited
for graph models. In this thesis we have briefly explored the existing concepts for
attribution in graph transformation. We compared two of these concepts, Typed
Attributed Graphs by Ehrig et al. and the graphs used in GP by Plump. We were
able to show that these concepts, despite their significantly different approaches
to the problem of attribution, can nevertheless handle similar classes of attributed
graphs. To this end we introduced transformations between the two approaches.

We further introduced a new approach to attribution based on a generalization of
labelling that allows for more complex labels. We constructed a category for these
labels and a category of graphs with attribute collections labelled with them. By
building a separate category for the attributes we reach a clear separation between
graph and attributes. The approach is flexible enough to be used in both typed and
untyped graphs and allows for the addition and removal of attributes in the untyped
case.

It seems to be obvious that both Typed Attributed Graphs and the graphs used in
GP can be expressed in graphs with attribute collections and vice versa.

Attributes in Typed Attributed Graphs can implicitly have multiple values, even
multiples of the same value. In graphs with attribute collections multisets can be
specified as an attribute type, this must be done explicitly though. While careful
construction of graphs and rules in Typed Attributed Graphs can prevent attributes
from unexpectedly having multiple values, graphs with attribute collections ensure
that an attribute has only a single value. Sets or other data types that contain
multiple values must be specified as attribute types and can still be used in graphs
with attribute collections.

Graphs with attribute collections can similarly be expressed in the graphs used in
GP. Since graphs with attribute collections allow matches even if only a part of a
node’s or edge’s attributes have been specified, the number of rules needed in this
approach can be significantly smaller. Additionally its easier to avoid accidental
interference between otherwise unrelated rules.
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We have presented a useful new concept for attribution in graph transformation.
Although it doesn’t expand on the expressiveness of Typed Attributed Graphs or
the graphs used in GP, it does offer a more comfortable approach that makers it
harder to make mistakes in specifying attributed graphs or rules for these graphs.
The concept offers:

• The flexibility to be used with either typed or untyped graphs.

• A clear separation between graph and attributes.

• Attributes that behave in an intuitive manner.

In future work the following problems could be explored further:

• Investigation of M,N -adhesiveness: The conjecture that graphs with
attribute collections are M,N -adhesive could be proven. This would allow
the approach to use existing and future results for this class of categories
instead of forcing us to revisit all of these questions.

• Computations over attribute values: Currently there is no way to in-
clude computations over attribute values in rules over graphs with attribute
collections. Here an approach similar to the rule schemata in GP could be
useful.

• Constraints over graphs with attribute collections: Constraints over
graphs with attribute collections could be formulated as nested graph condi-
tions. It would not be possible however, to include constraints over attribute
values in that setting unless these conditions are expanded in this direction.
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